This doctoral thesis investigates the development and validation of innovative in-situ acoustic characterization methods for complex materials, with a particular focus on automotive applications. The research compares traditional standardized techniques, such as the Kundt’s tube method, with two emerging in-situ approaches: the Microflown PU probe and the Sonocat spherical microphone array system. Through extensive experimental measurements in both laboratory and real-world environments, the study evaluates the effectiveness, reliability, and practicality of these methods for measuring acoustic absorption coefficients across various materials, from standard reference samples (Basotect and EPS) to complex multilayered structures like automotive seats. The research demonstrates that while the Kundt’s tube provides reliable measurements in controlled environments, it presents significant limitations including its destructive nature and inability to characterize materials in their actual conditions of use. In contrast, the in-situ techniques offer valuable complementary capabilities: the Microflown probe excels in point measurements with high spatial resolution in the 800-5000 Hz range, while the Sonocat system provides better directional characterization and management of environmental reflections between 300-6300 Hz. The study includes numerical simulations using both Finite Element Method (FEM) and Ray Tracing approaches to validate the experimental results. Additionally, the research examines innovative recycled materials, demonstrating the potential of in-situ techniques for developing sustainable acoustic solutions. The findings highlight how these non-destructive techniques can effectively overcome the limitations of traditional methods while maintaining measurement accuracy, supporting their potential integration into standardized acoustic characterization methodologies.
Questa tesi di dottorato investiga lo sviluppo e la validazione di metodi innovativi di caratterizzazione acustica in-situ per materiali complessi, con un focus particolare sulle applicazioni automobilistiche. La ricerca confronta tecniche tradizionali standardizzate, come il metodo del tubo di Kundt, con due approcci emergenti in-situ: la sonda PU Microflown e il sistema Sonocat con array microfonico sferico. Attraverso estese misurazioni sperimentali sia in laboratorio che in ambienti reali, lo studio valuta l’efficacia, l’affidabilità e la praticità di questi metodi per misurare i coefficienti di assorbimento acustico su vari materiali, da campioni di riferimento standard (Basotect ed EPS) a strutture multistrato complesse come i sedili automobilistici. La ricerca dimostra che, mentre il tubo di Kundt fornisce misurazioni affidabili in ambienti controllati, presenta significative limitazioni, tra cui la sua natura distruttiva e l’impossibilità di caratterizzare i materiali nelle loro effettive condizioni d’uso. Al contrario, le tecniche in-situ offrono preziose capacità complementari: la sonda Microflown eccelle nelle misurazioni puntuali con alta risoluzione spaziale nella gamma 800-5000 Hz, mentre il sistema Sonocat fornisce una migliore caratterizzazione direzionale e gestione delle riflessioni ambientali tra 300-6300 Hz. Lo studio include simulazioni numeriche utilizzando sia il Metodo degli Elementi Finiti (FEM) che approcci di Ray Tracing per validare i risultati sperimentali. Inoltre, la ricerca esamina materiali innovativi riciclati, dimostrando il potenziale delle tecniche in-situ per lo sviluppo di soluzioni acustiche sostenibili. I risultati evidenziano come queste tecniche non distruttive possano efficacemente superare le limitazioni dei metodi tradizionali mantenendo l’accuratezza delle misurazioni, supportando la loro potenziale integrazione nelle metodologie standardizzate di caratterizzazione acustica.
Development and Validation of In-Situ Acoustic Characterization Methods: A Comparative Analysis of Innovative Measurement Techniques for Complex Materials
Jessica, Ferrari
2025
Abstract
This doctoral thesis investigates the development and validation of innovative in-situ acoustic characterization methods for complex materials, with a particular focus on automotive applications. The research compares traditional standardized techniques, such as the Kundt’s tube method, with two emerging in-situ approaches: the Microflown PU probe and the Sonocat spherical microphone array system. Through extensive experimental measurements in both laboratory and real-world environments, the study evaluates the effectiveness, reliability, and practicality of these methods for measuring acoustic absorption coefficients across various materials, from standard reference samples (Basotect and EPS) to complex multilayered structures like automotive seats. The research demonstrates that while the Kundt’s tube provides reliable measurements in controlled environments, it presents significant limitations including its destructive nature and inability to characterize materials in their actual conditions of use. In contrast, the in-situ techniques offer valuable complementary capabilities: the Microflown probe excels in point measurements with high spatial resolution in the 800-5000 Hz range, while the Sonocat system provides better directional characterization and management of environmental reflections between 300-6300 Hz. The study includes numerical simulations using both Finite Element Method (FEM) and Ray Tracing approaches to validate the experimental results. Additionally, the research examines innovative recycled materials, demonstrating the potential of in-situ techniques for developing sustainable acoustic solutions. The findings highlight how these non-destructive techniques can effectively overcome the limitations of traditional methods while maintaining measurement accuracy, supporting their potential integration into standardized acoustic characterization methodologies.File | Dimensione | Formato | |
---|---|---|---|
FERRARIJESSICA_PhDThesis_V2(pdfA).pdf
embargo fino al 01/06/2026
Dimensione
6.33 MB
Formato
Adobe PDF
|
6.33 MB | Adobe PDF |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/213359
URN:NBN:IT:UNIPR-213359