The gut-bone axis plays a critical role in maintaining metabolic and skeletal health through intricate, complex physiological interactions. Following the principles of the 3Rs (Replacement, Reduction, and Refinement), a comprehensive 3D in vitro model was developed to mimic the gut and bone microenvironments, focusing on their crosstalk mediated by the gut microbiota. For the intestinal model, a bioengineered barrier was fabricated using electrospun gelatin scaffolds designed to mimic the structural and functional characteristics of the intestinal epithelium. The Caco-2 cell line was used to form a monolayer exhibiting small intestine features, including tight junctions, microvilli, and mucus production. The functionality of the developed intestinal barrier was validated through TEER measurements and permeability assays using Lucifer Yellow, confirming its ability to mimic the selective permeability of the intestinal epithelium. Moreover, the impact of human microbiota on epithelial morphology and functionality was assessed. For the bone model, the effect of microbiota was evaluated on osteoblast activity (Saos-2 cell line) and osteoclastogenesis using peripheral blood mononuclear cells (PBMCs) was assessed. To get new insights into the mechanisms underlying the gut-bone crosstalk, a 3D scaffold composed of gelatin, genipin, and nanohydroxyapatite was fabricated to replicate bone tissue's structural and biochemical properties. This scaffold supported the adhesion, proliferation, and differentiation of osteoblasts-like cells Saos-2. The feasibility of developing scaffolds made from food industry by-products, such as pectin, has also been evaluated to address sustainable development in biomaterial science. In perspective, integrating these two models will offer a novel platform for studying the microbiota-bone axis in vitro, paving the way for applications in personalized therapeutic strategies.
L’asse intestino-osso svolge un ruolo fondamentale nel mantenimento della salute metabolica e scheletrica, attraverso complesse interazioni fisiologiche. Seguendo i principi delle 3R (Replacement, Reduction e Refinement), è stato sviluppato un modello tridimensionale in vitro per riprodurre i microambienti intestinali e ossei, con particolare attenzione al loro crosstalk mediato dal microbiota intestinale. Per il modello intestinale, è stata realizzata una barriera bioingegnerizzata utilizzando scaffold in gelatina elettrofilata, progettati per imitare le caratteristiche strutturali e funzionali dell’epitelio intestinale. Le cellule Caco-2 sullo scaffold formano un monostrato con caratteristiche simili all’intestino tenue, tra cui giunzioni strette, microvilli e produzione di muco. La funzionalità della barriera è stata confermata tramite attraverso il TEER e saggi di permeabilità con Lucifer Yellow, dimostrando la capacità di mimare la permeabilità selettiva dell’epitelio intestinale. Inoltre, è stato valutato l’effetto del microbiota umano sulla morfologia e funzionalità epiteliale. Nel modello osseo, è stato analizzato l’impatto del microbiota sull’attività degli osteoblasti (linea cellulare Saos-2) e sulla formazione degli osteoclasti mediante cellule mononucleate del sangue periferico (PBMC). Per ricreare le proprietà strutturali e biochimiche del tessuto osseo, è stato sviluppato uno scaffold 3D a base di gelatina, genipina e nanoidrossiapatite, che ha supportato l’adesione, proliferazione e differenziamento delle cellule Saos-2. Infine, è stata valutata anche la possibilità di realizzare scaffold sostenibili da sottoprodotti dell’industria alimentare, come la pectina. L’integrazione futura di questi due modelli consentirà lo sviluppo una nuova piattaforma per lo studio in vitro dell’asse microbiota-osso, aprendo la strada a strategie terapeutiche personalizzate.
EXPLORING THE CROSSTALK BETWEEN GUT MICROBIOTA AND BONE TISSUE USING A 3D IN VITRO MODEL: INSIGHTS FOR SUSTAINABLE STRATEGIES
LAMANNA, DANIELA
2025
Abstract
The gut-bone axis plays a critical role in maintaining metabolic and skeletal health through intricate, complex physiological interactions. Following the principles of the 3Rs (Replacement, Reduction, and Refinement), a comprehensive 3D in vitro model was developed to mimic the gut and bone microenvironments, focusing on their crosstalk mediated by the gut microbiota. For the intestinal model, a bioengineered barrier was fabricated using electrospun gelatin scaffolds designed to mimic the structural and functional characteristics of the intestinal epithelium. The Caco-2 cell line was used to form a monolayer exhibiting small intestine features, including tight junctions, microvilli, and mucus production. The functionality of the developed intestinal barrier was validated through TEER measurements and permeability assays using Lucifer Yellow, confirming its ability to mimic the selective permeability of the intestinal epithelium. Moreover, the impact of human microbiota on epithelial morphology and functionality was assessed. For the bone model, the effect of microbiota was evaluated on osteoblast activity (Saos-2 cell line) and osteoclastogenesis using peripheral blood mononuclear cells (PBMCs) was assessed. To get new insights into the mechanisms underlying the gut-bone crosstalk, a 3D scaffold composed of gelatin, genipin, and nanohydroxyapatite was fabricated to replicate bone tissue's structural and biochemical properties. This scaffold supported the adhesion, proliferation, and differentiation of osteoblasts-like cells Saos-2. The feasibility of developing scaffolds made from food industry by-products, such as pectin, has also been evaluated to address sustainable development in biomaterial science. In perspective, integrating these two models will offer a novel platform for studying the microbiota-bone axis in vitro, paving the way for applications in personalized therapeutic strategies.File | Dimensione | Formato | |
---|---|---|---|
tesi_Lamanna.pdf
embargo fino al 31/10/2026
Dimensione
4.16 MB
Formato
Adobe PDF
|
4.16 MB | Adobe PDF |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/215244
URN:NBN:IT:UNIVPM-215244