In questa tesi si è analizzato il legame tra invarianza di Weyl e presenza di una struttura post-Riemanniana, studiando nel dettaglio il caso di presenza di gradi di libertà di torsione. Si è poi considerata l'invarianza proiettiva, mostrando come, assumendo l'invarianza della teoria sotto trasformazioni proiettive, sia possibile porre consistentemente a zero i modi (pseudo)-vettoriali. Successivamente è stata derivata per la prima volta l'azione conforme per tensori a simmetria mista su un background Riemanniano. Infine, è stata derivata per la prima volta una decomposizione covariante in autostati di spin e parità della torsione, che è poi stata utilizzata per dare una definizione formale della misura di integrazione funzionale per fluttuazioni della torsione. In this thesis we have analyzed the interplay between Weyl invariance and the presence of a post-Riemannian structure, scrutinizing in detail the situation in which there are torsion degrees of freedom. Then we have dealt with projective invariances, showing that by assuming the invariance of the theory under three different types of projective transformations we can consistently set to zero the Weyl and torsion vectors, as well as the axial torsion. Then, we have derived for the first time the conformal coupling of mixed-symmetry tensors on a background Riemannian geometry. Finally, we have proved for the first time how it is possible to write down a covariant decomposition of the torsion tensor into its spin-parity eigenstates in a background Riemannian geometry, and we have employed such a decomposition to formally define the path integral measure over torsion fluctuations.

Symmetries in Metric-Affine Gravity:when Cartan meets Weyl

SAURO, DARIO
2024

Abstract

In questa tesi si è analizzato il legame tra invarianza di Weyl e presenza di una struttura post-Riemanniana, studiando nel dettaglio il caso di presenza di gradi di libertà di torsione. Si è poi considerata l'invarianza proiettiva, mostrando come, assumendo l'invarianza della teoria sotto trasformazioni proiettive, sia possibile porre consistentemente a zero i modi (pseudo)-vettoriali. Successivamente è stata derivata per la prima volta l'azione conforme per tensori a simmetria mista su un background Riemanniano. Infine, è stata derivata per la prima volta una decomposizione covariante in autostati di spin e parità della torsione, che è poi stata utilizzata per dare una definizione formale della misura di integrazione funzionale per fluttuazioni della torsione. In this thesis we have analyzed the interplay between Weyl invariance and the presence of a post-Riemannian structure, scrutinizing in detail the situation in which there are torsion degrees of freedom. Then we have dealt with projective invariances, showing that by assuming the invariance of the theory under three different types of projective transformations we can consistently set to zero the Weyl and torsion vectors, as well as the axial torsion. Then, we have derived for the first time the conformal coupling of mixed-symmetry tensors on a background Riemannian geometry. Finally, we have proved for the first time how it is possible to write down a covariant decomposition of the torsion tensor into its spin-parity eigenstates in a background Riemannian geometry, and we have employed such a decomposition to formally define the path integral measure over torsion fluctuations.
7-mar-2024
Italiano
metric-affine theories
Torsion
Weyl invariance
Zanusso, Omar
File in questo prodotto:
File Dimensione Formato  
main.pdf

accesso aperto

Dimensione 1 MB
Formato Adobe PDF
1 MB Adobe PDF Visualizza/Apri
Report_firmato_DS.pdf

non disponibili

Dimensione 539.74 kB
Formato Adobe PDF
539.74 kB Adobe PDF

I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14242/215459
Il codice NBN di questa tesi è URN:NBN:IT:UNIPI-215459