Smart cities face challenges like mobility, sustainability, energy management, and safety. AI addresses these by enabling data-driven decision support systems (DSS) that process data, identify patterns, and make real-time decisions. AI models urban environments to monitor air quality, mobility, and energy use, supporting better planning. It forecasts needs, simulates scenarios, and optimizes resources. AI tools like NLP and Explainable AI (XAI) improve transparency and efficiency in governance, helping cities adapt to evolving demands while enhancing resource use.
Artificial Intelligence data-driven support systems for Smart Cities
COLLINI, ENRICO
2025
Abstract
Smart cities face challenges like mobility, sustainability, energy management, and safety. AI addresses these by enabling data-driven decision support systems (DSS) that process data, identify patterns, and make real-time decisions. AI models urban environments to monitor air quality, mobility, and energy use, supporting better planning. It forecasts needs, simulates scenarios, and optimizes resources. AI tools like NLP and Explainable AI (XAI) improve transparency and efficiency in governance, helping cities adapt to evolving demands while enhancing resource use.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Collini_Tesi_PhD_final.pdf
accesso aperto
Dimensione
12.51 MB
Formato
Adobe PDF
|
12.51 MB | Adobe PDF | Visualizza/Apri |
FinalReport_Collini_pdfA.pdf
non disponibili
Dimensione
6.3 MB
Formato
Adobe PDF
|
6.3 MB | Adobe PDF |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
Utilizza questo identificativo per citare o creare un link a questo documento:
https://hdl.handle.net/20.500.14242/215663
Il codice NBN di questa tesi è
URN:NBN:IT:UNIPI-215663