Technology-Assisted Review (TAR) refers to the human-in-the-loop machine learning process whose goal is that of maximizing the cost-effectiveness of a review (i.e., the task of labeling items to satisfy an information need). This thesis explores and thoroughly analyzes: the applicability of the SLD algorithm to TAR scenarios; the usage of active learning combined with the MINECORE framework, effectively improving the framework performance; the portability of machine/deep learning models for the production of systematic reviews in empirical medicine. Finally, the thesis proposes a new algorithm, based on SLD, called SALt, which improves the class prevalence estimates on active learning scenarios, with respect to the current state-of-the-art.
Posterior Probabilities, Active Learning, and Transfer Learning in Technology-Assisted Review
MOLINARI, ALESSIO
2023
Abstract
Technology-Assisted Review (TAR) refers to the human-in-the-loop machine learning process whose goal is that of maximizing the cost-effectiveness of a review (i.e., the task of labeling items to satisfy an information need). This thesis explores and thoroughly analyzes: the applicability of the SLD algorithm to TAR scenarios; the usage of active learning combined with the MINECORE framework, effectively improving the framework performance; the portability of machine/deep learning models for the production of systematic reviews in empirical medicine. Finally, the thesis proposes a new algorithm, based on SLD, called SALt, which improves the class prevalence estimates on active learning scenarios, with respect to the current state-of-the-art.File | Dimensione | Formato | |
---|---|---|---|
molinari_phd_thesis.pdf
accesso aperto
Dimensione
5.48 MB
Formato
Adobe PDF
|
5.48 MB | Adobe PDF | Visualizza/Apri |
molinari_report.pdf
non disponibili
Dimensione
126.46 kB
Formato
Adobe PDF
|
126.46 kB | Adobe PDF |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/215752
URN:NBN:IT:UNIPI-215752