We study systems of the nonlinear dispersive equations in a general domain. For example, we focus on the Zakharov system, the Schrödinger-improved Boussinesq system and the Klein-Gordon-Schrödinger system. We prove the existence and uniqueness of solutions of the above systems by using the energy and the modified energy method. Moreover, we show the vanishing limit for the Schrödinger-improved Boussinesq system.
Mathematical analysis for systems of nonlinear dispersive equations
TOMIOKA, KENTA
2024
Abstract
We study systems of the nonlinear dispersive equations in a general domain. For example, we focus on the Zakharov system, the Schrödinger-improved Boussinesq system and the Klein-Gordon-Schrödinger system. We prove the existence and uniqueness of solutions of the above systems by using the energy and the modified energy method. Moreover, we show the vanishing limit for the Schrödinger-improved Boussinesq system.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Report.pdf
non disponibili
Dimensione
71.08 kB
Formato
Adobe PDF
|
71.08 kB | Adobe PDF | |
thesis.pdf
accesso aperto
Dimensione
473.02 kB
Formato
Adobe PDF
|
473.02 kB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
Utilizza questo identificativo per citare o creare un link a questo documento:
https://hdl.handle.net/20.500.14242/215877
Il codice NBN di questa tesi è
URN:NBN:IT:UNIPI-215877