We study systems of the nonlinear dispersive equations in a general domain. For example, we focus on the Zakharov system, the Schrödinger-improved Boussinesq system and the Klein-Gordon-Schrödinger system. We prove the existence and uniqueness of solutions of the above systems by using the energy and the modified energy method. Moreover, we show the vanishing limit for the Schrödinger-improved Boussinesq system.

Mathematical analysis for systems of nonlinear dispersive equations

TOMIOKA, KENTA
2024

Abstract

We study systems of the nonlinear dispersive equations in a general domain. For example, we focus on the Zakharov system, the Schrödinger-improved Boussinesq system and the Klein-Gordon-Schrödinger system. We prove the existence and uniqueness of solutions of the above systems by using the energy and the modified energy method. Moreover, we show the vanishing limit for the Schrödinger-improved Boussinesq system.
18-nov-2024
Italiano
dispersive equations
nonlinear analysis
system
Ozawa, Tohru
Gueorguiev, Vladimir Simeonov
File in questo prodotto:
File Dimensione Formato  
Report.pdf

non disponibili

Dimensione 71.08 kB
Formato Adobe PDF
71.08 kB Adobe PDF
thesis.pdf

accesso aperto

Dimensione 473.02 kB
Formato Adobe PDF
473.02 kB Adobe PDF Visualizza/Apri

I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14242/215877
Il codice NBN di questa tesi è URN:NBN:IT:UNIPI-215877