The main goal of this PhD thesis is to search for new physics in the rare baryon decay Λ_c^+→pμ^+ μ^-. Charm hadrons are abundantly produced by the LHC accelerator in proton-proton collisions and their decay products are recorded by the LHCb detector. The analysis was carried out for data collected in the Run2 phase in the years 2016-2018 at the center of mass energy of 13 TeV. The decay of Λ_c^+→pμ^+ μ^- is strongly suppressed as it occurs through FCNC (Flavour-Changing Neutral Currents) processes. This creates the potential for observing small effects from processes beyond the Standard Model that may cause differences in predicted and observed decay rates or angular distributions of decay products. In this thesis, an analysis of two ranges of the invariant mass of the muon system m(µ+µ−) was performed. The region of the signal corresponding to a decay in short-distance processes included the ranges mµ+µ− < 507.86 MeV/c2 and mµ+µ− > 1059.45 MeV/c2. The region of long-distance decays involving resonances was divided into ranges including η, ρ, ω and ϕ. The resonant decay Λ+→ pϕ served as both a normalization and control channel. The same final state for the signal and the normalization channel ensured the cancellation of many systematic effects. The results on the upper limit of the signal decay and the decay ratios of the resonant channels with respect to the normalization channel are presented. In the upper range of the signal mµ+µ− > 1059.45 MeV/c2 the statistical significance exceeded two standard deviations. Interpretation of this result other than the occurrence of statistical fluctuation would require collecting more events and performing an angular analysis. In the resonant region, the decay of Λ+ → pρ was observed for the first time and its branching ratio was measured.

Search for the Λ+ c → pμ+μ− decay at the LHCb Experiment

MACIEJ WOJCIECH, DUDEK
2023

Abstract

The main goal of this PhD thesis is to search for new physics in the rare baryon decay Λ_c^+→pμ^+ μ^-. Charm hadrons are abundantly produced by the LHC accelerator in proton-proton collisions and their decay products are recorded by the LHCb detector. The analysis was carried out for data collected in the Run2 phase in the years 2016-2018 at the center of mass energy of 13 TeV. The decay of Λ_c^+→pμ^+ μ^- is strongly suppressed as it occurs through FCNC (Flavour-Changing Neutral Currents) processes. This creates the potential for observing small effects from processes beyond the Standard Model that may cause differences in predicted and observed decay rates or angular distributions of decay products. In this thesis, an analysis of two ranges of the invariant mass of the muon system m(µ+µ−) was performed. The region of the signal corresponding to a decay in short-distance processes included the ranges mµ+µ− < 507.86 MeV/c2 and mµ+µ− > 1059.45 MeV/c2. The region of long-distance decays involving resonances was divided into ranges including η, ρ, ω and ϕ. The resonant decay Λ+→ pϕ served as both a normalization and control channel. The same final state for the signal and the normalization channel ensured the cancellation of many systematic effects. The results on the upper limit of the signal decay and the decay ratios of the resonant channels with respect to the normalization channel are presented. In the upper range of the signal mµ+µ− > 1059.45 MeV/c2 the statistical significance exceeded two standard deviations. Interpretation of this result other than the occurrence of statistical fluctuation would require collecting more events and performing an angular analysis. In the resonant region, the decay of Λ+ → pρ was observed for the first time and its branching ratio was measured.
8-nov-2023
Inglese
LUPPI, Eleonora
CALABRESE, Roberto
GUIDI, Vincenzo
Università degli studi di Ferrara
File in questo prodotto:
File Dimensione Formato  
Maciej_Dudek_DR.pdf

accesso aperto

Dimensione 10.06 MB
Formato Adobe PDF
10.06 MB Adobe PDF Visualizza/Apri

I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14242/218583
Il codice NBN di questa tesi è URN:NBN:IT:UNIFE-218583