Over the past few decades, numerical optimization techniques have gained increasing relevance across various sectors, including economics, engineering, and architecture. These techniques have driven the development of innovative solutions to optimize resources and reduce waste. Thus, many fields of engineering, such as mechanical, aerospace, biomedical, and more recently, civil engineering, have been interested in these approaches. Focusing on civil engineering, longstanding challenges like material waste and high carbon footprints are now being tackled through the introduction of novel methodologies and technologies that promote sustainability and a circular economy. This thesis explores the intersection of topology optimization strategies and large-scale additive manufacturing, proposing a comprehensive methodology that encompasses theoretical formulation, numerical implementation, and fabrication of large-scale components. The classical numerical analysis method, i.e. the Finite Element Method (FEM), is integrated with numerical optimization techniques in the computational method known as topology optimization. This approach has garnered attention across multiple fields due to its flexibility in solving a wide range of problems, from structural engineering to architecture, fluid dynamics, and thermal control, etc. Despite the vast potential of topology optimization, its practical applications remained limited until the rise of additive manufacturing. Historically, the ability to produce complex and optimized designs was hampered by a lack of adequate manufacturing technologies as well as the computational resources required for large-scale simulations. Hence, a structural optimization framework is introduced, capable of optimizing both structural and non-structural systems through a multi-material formulation. The framework accommodates both solid and architected materials, focusing on maximizing stiffness under volume constraints. The methodology investigates the design of various architectures with periodic and non-periodic topologies. Optimization is performed using a density-based approach, implemented with mathematical numerical techniques to update iteratively the design, allowing for the continuous design of two- and three-dimensional structures. The designed hierarchical structures leverage on anisotropic mechanical properties to achieve lightweight structures with potential multifunctional capabilities. Several examples are presented, demonstrating the framework's versatility in both restricted and relaxed material scenarios under volume constraints. Furthermore, the optimization framework is embedded into large-scale additive manufacturing processes. Special emphasis is placed on the fabrication of spinodal architected materials, a class of stochastic, bicontinuous, and unstructured architected materials. Detailed examples of successful manufacturing efforts are provided, illustrating the framework's practical applications. The proposed approach utilizes an innovative large-scale additive manufacturing technology, enabling the production of eco-sustainable components made from mineral powders and by-products derived from construction industry waste, such as stone residues, cements, and quarry waste, along with the use of eco-friendly binders. In conclusion, this work introduces a multi-scale, multi-material framework that integrates topology optimization with hierarchical microstructural systems. By embedding these designs within an advanced additive manufacturing process, the methodology achieves both theoretical and practical advancements in computational mechanics, as validated by numerical results. This research underscores the potential for sustainable, large-scale fabrication of optimized structures, contributing to reduced environmental impact.
Negli ultimi decenni le tecniche di ottimizzazione numerica hanno ricevuto un crescente interesse in vari settori, tra cui l'economia, l'ingegneria e l'architettura. Tali tecniche hanno consentito lo sviluppo di soluzioni innovative mirate a ridurre gli sprechi e preservare le risorse. Pertanto, molti ambiti dell'ingegneria, come quello meccanico, aerospaziale, biomedico e, più recentemente quello civile, hanno manifestato un crescente interesse verso questi approcci. Nell'ingegneria civile, lo spreco di materiali e l'impatto ambientale rappresentano sfide che richiedono metodologie e tecnologie innovative. Questa tesi analizza la potenziale sinergia tra l’ottimizzazione topologica e la manifattura additiva di larga scala, proponendo una metodologia costituita da formulazione teorica, implementazione numerica e fabbricazione di componenti di larga scala. L’ottimizzazione topologica rappresenta un metodo computazionale che integra il classico metodo di analisi ingegneristico, ovvero il metodo degli elementi finiti (FEM), con l'ottimizzazione numerica. Tale metodo di progettazione si è diffuso in diversi settori grazie alla flessibilità di risolvere problemi che spaziano dall'ingegneria strutturale all'architettura, al controllo termico, etc. Nonostante l’enorme potenziale dell’ottimizzazione topologica, le sue applicazioni sono rimaste limitate fino all’introduzione della manifattura additiva. Infatti, la possibilità di produrre oggetti complessi e ottimizzati è stata limitata sia dall’assenza di tecnologie di produzione adeguate che da risorse computazionali necessarie per gestire simulazioni su larga scala. In questa tesi viene presentata una metodologia di ottimizzazione strutturale, che consente di studiare sia sistemi strutturali che non strutturali attraverso una formulazione multimateriale. Il metodo presentato integra materiali dotati di microstruttura e massimizza la rigidezza del sistema assegnato sotto vincolo di volume. In particolare, la metodologia esplora la progettazione di varie microstrutture esplorando topologie sia periodiche che non periodiche. L'ottimizzazione è effettuata attraverso un approccio basato sulla densità degli elementi, che è combinato con tecniche numeriche che consentono di aggiornare iterativamente la topologia della struttura sia per strutture bidimensionali che tridimensionali. Le strutture gerarchiche, sfruttando le proprietà meccaniche anisotrope, permettono di realizzare strutture leggere con potenziali capacità multifunzionali. Vari risultati sono presentati per dimostrare la versatilità della metodologia considerando vincoli locali di volume. Inoltre, la metodologia presentata è integrata con un processo di manifattura additiva su larga scala tramite una strategia di post-processing. Particolare attenzione è stata posta sulla fabbricazione di materiali spinodali, che sono una classe di microstrutture stocastiche, bifasiche e non regolari. L'approccio presentato è stato applicato ad una tecnologia innovativa di manifattura additiva per la produzione di componenti di larga scala, che consente la produzione di componenti eco-sostenibili realizzati con polveri minerali e sottoprodotti derivati dai rifiuti dell'industria delle costruzioni, come residui di pietra, cementi e rifiuti di cava, con l'uso di leganti ecologici. In conclusione, la metodologia integra l'ottimizzazione topologica con microstrutture tramite approccio un approccio multi-scala. I risultati presentati mostrano e convalidano l'approccio, anche per la produzione di strutture ottimizzate a ridotto impatto ambientale tramite un innovativo processo di produzione.
Multi-scale Structural Optimization with Embedded Architected Materials for Large-Scale Additive Manufacturing
NALE, ANDREA
2025
Abstract
Over the past few decades, numerical optimization techniques have gained increasing relevance across various sectors, including economics, engineering, and architecture. These techniques have driven the development of innovative solutions to optimize resources and reduce waste. Thus, many fields of engineering, such as mechanical, aerospace, biomedical, and more recently, civil engineering, have been interested in these approaches. Focusing on civil engineering, longstanding challenges like material waste and high carbon footprints are now being tackled through the introduction of novel methodologies and technologies that promote sustainability and a circular economy. This thesis explores the intersection of topology optimization strategies and large-scale additive manufacturing, proposing a comprehensive methodology that encompasses theoretical formulation, numerical implementation, and fabrication of large-scale components. The classical numerical analysis method, i.e. the Finite Element Method (FEM), is integrated with numerical optimization techniques in the computational method known as topology optimization. This approach has garnered attention across multiple fields due to its flexibility in solving a wide range of problems, from structural engineering to architecture, fluid dynamics, and thermal control, etc. Despite the vast potential of topology optimization, its practical applications remained limited until the rise of additive manufacturing. Historically, the ability to produce complex and optimized designs was hampered by a lack of adequate manufacturing technologies as well as the computational resources required for large-scale simulations. Hence, a structural optimization framework is introduced, capable of optimizing both structural and non-structural systems through a multi-material formulation. The framework accommodates both solid and architected materials, focusing on maximizing stiffness under volume constraints. The methodology investigates the design of various architectures with periodic and non-periodic topologies. Optimization is performed using a density-based approach, implemented with mathematical numerical techniques to update iteratively the design, allowing for the continuous design of two- and three-dimensional structures. The designed hierarchical structures leverage on anisotropic mechanical properties to achieve lightweight structures with potential multifunctional capabilities. Several examples are presented, demonstrating the framework's versatility in both restricted and relaxed material scenarios under volume constraints. Furthermore, the optimization framework is embedded into large-scale additive manufacturing processes. Special emphasis is placed on the fabrication of spinodal architected materials, a class of stochastic, bicontinuous, and unstructured architected materials. Detailed examples of successful manufacturing efforts are provided, illustrating the framework's practical applications. The proposed approach utilizes an innovative large-scale additive manufacturing technology, enabling the production of eco-sustainable components made from mineral powders and by-products derived from construction industry waste, such as stone residues, cements, and quarry waste, along with the use of eco-friendly binders. In conclusion, this work introduces a multi-scale, multi-material framework that integrates topology optimization with hierarchical microstructural systems. By embedding these designs within an advanced additive manufacturing process, the methodology achieves both theoretical and practical advancements in computational mechanics, as validated by numerical results. This research underscores the potential for sustainable, large-scale fabrication of optimized structures, contributing to reduced environmental impact.File | Dimensione | Formato | |
---|---|---|---|
Nale_Phd Thesis.pdf
accesso aperto
Dimensione
16.04 MB
Formato
Adobe PDF
|
16.04 MB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/218627
URN:NBN:IT:UNIFE-218627