Tissue Engineering represents one of the central themes of 21st-century medicine. Initially focused on the bioengineering of dermal substitutes, it has broadened its scope with the advent of adult stem cells, facilitating the transition to regenerative medicine. The latter aims to repair or regenerate damaged tissues and organs by utilizing adipose tissue as an accessible and abundant source of mesenchymal stem cells (ASCs). These cells are applied in conditions such as osteoarthritis, thanks to their anti-inflammatory, pro-angiogenic, and regenerative capabilities. Despite their therapeutic potential, the clinical use of stem cells has been limited by stringent regulations governing cellular manipulation. However, devices that process adipose tissue with minimal manipulation, such as Rigenera and Hy-Tissue SVF, are approved for the extraction of stromal vascular fraction (SVF), offering a feasible clinical solution. These systems, besides enhancing angiogenesis and reducing inflammation, are promising for treating degenerative conditions, including trapezio-metacarpal (TMC) osteoarthritis. This thesis compares enzymatic and mechanical methods for isolating SVF and ASCs. The results show that the enzymatic method provides higher cell yield, faster proliferation times, and greater expression of stemness markers (CD90, CD73). However, mechanical methods preserve greater cellular heterogeneity, representing a viable alternative due to their simplicity of use. In vitro experiments confirmed the multipotency of ASCs, with differentiation capacity into adipocytes, chondrocytes, and osteocytes. Preclinical studies on animal models demonstrated the effectiveness of SVF in treating tendinopathy and osteoarthritis, improving tissue repair and reducing inflammation and pain. In a canine osteoarthritis model, SVF treatment showed superior benefits compared to hyaluronic acid. In parallel, a clinical study on patients with trapezio-metacarpal osteoarthritis evaluated the use of autologous micro-fat grafts (mFAT), obtained through a non-enzymatic method. Results showed a significant reduction in pain and improved joint functionality at 6 and 12 months. Radiographic analyses indicated structural stability, while in vitro studies characterized extracellular vesicles derived from mFAT, demonstrating their ability to modulate pain and reduce inflammation. In conclusion, the use of SVF and mFAT represents an innovative and safe approach for degenerative conditions, opening new perspectives in regenerative medicine. This work helps bridge gaps in the literature and supports the development of minimally invasive treatments for osteoarthritis and other degenerative conditions.
L’Ingegneria Tissutale rappresenta uno dei temi centrali della medicina del ventunesimo secolo. Originariamente focalizzata sulla bioingegneria di sostituti dermici, ha ampliato il suo campo d’azione grazie all’avvento delle cellule staminali adulte, favorendo la transizione verso la medicina rigenerativa. Quest’ultima mira a riparare o rigenerare tessuti e organi danneggiati, sfruttando il tessuto adiposo come fonte accessibile e abbondante di cellule staminali mesenchimali (ASCs). Tali cellule trovano applicazione in patologie come l’osteoartrite, grazie alle loro capacità antinfiammatorie, pro-angiogeniche e rigenerative. Nonostante il potenziale terapeutico, l’uso clinico delle cellule staminali è stato limitato da normative stringenti che regolano la manipolazione cellulare. Tuttavia, dispositivi che processano il tessuto adiposo con manipolazione minima, come Rigenera e Hy-Tissue SVF, sono approvati per l’estrazione della frazione vascolare stromale (SVF), offrendo una soluzione praticabile in ambito clinico. Questi sistemi, oltre a migliorare l'angiogenesi e ridurre l’infiammazione, sono promettenti per il trattamento di condizioni degenerative, inclusa l’artrosi trapezio-metacarpale (TMC). La presente tesi confronta metodi enzimatici e meccanici per l’isolamento di SVF e ASCs. I risultati dimostrano che il metodo enzimatico offre una resa cellulare superiore, tempi di proliferazione più rapidi e un’elevata espressione di marcatori di staminalità (CD90, CD73). Tuttavia, i metodi meccanici preservano una maggiore eterogeneità cellulare, rappresentando un’alternativa valida grazie alla semplicità d’uso. Esperimenti in vitro hanno confermato la multipotenza delle ASCs, con capacità di differenziazione in adipociti, condrociti e osteociti. Studi preclinici su modelli animali hanno evidenziato l’efficacia della SVF nel trattamento della tendinopatia e dell’osteoartrite, migliorando la riparazione tissutale e riducendo infiammazione e dolore. In un modello di osteoartrite canina, il trattamento con SVF ha mostrato benefici superiori rispetto all’acido ialuronico. Parallelamente, uno studio clinico su pazienti con artrosi trapezio-metacarpale ha valutato l’uso di micro-innesti adiposi autologhi (mFAT), ottenuti con un metodo non enzimatico. I risultati hanno mostrato una riduzione significativa del dolore e un miglioramento della funzionalità articolare a 6 e 12 mesi. Analisi radiografiche hanno evidenziato stabilità strutturale, mentre studi in vitro hanno caratterizzato le vescicole extracellulari derivate da mFAT, dimostrando la loro capacità di modulare il dolore e ridurre l’infiammazione. In conclusione, l’uso di SVF e mFAT rappresenta un approccio innovativo e sicuro per patologie degenerative, aprendo nuove prospettive nella medicina rigenerativa. Questo lavoro contribuisce a colmare le lacune nella letteratura e supporta lo sviluppo di trattamenti minimamente invasivi per l’artrosi e altre condizioni degenerative.
Vescicole extracellulari contenute nel tessuto adiposo microframmentato: un nuovo approccio per la terapia degli stadi primo e secondo dell'artrite dell'articolazione basale del pollice
DE FRANCESCO, FRANCESCO
2025
Abstract
Tissue Engineering represents one of the central themes of 21st-century medicine. Initially focused on the bioengineering of dermal substitutes, it has broadened its scope with the advent of adult stem cells, facilitating the transition to regenerative medicine. The latter aims to repair or regenerate damaged tissues and organs by utilizing adipose tissue as an accessible and abundant source of mesenchymal stem cells (ASCs). These cells are applied in conditions such as osteoarthritis, thanks to their anti-inflammatory, pro-angiogenic, and regenerative capabilities. Despite their therapeutic potential, the clinical use of stem cells has been limited by stringent regulations governing cellular manipulation. However, devices that process adipose tissue with minimal manipulation, such as Rigenera and Hy-Tissue SVF, are approved for the extraction of stromal vascular fraction (SVF), offering a feasible clinical solution. These systems, besides enhancing angiogenesis and reducing inflammation, are promising for treating degenerative conditions, including trapezio-metacarpal (TMC) osteoarthritis. This thesis compares enzymatic and mechanical methods for isolating SVF and ASCs. The results show that the enzymatic method provides higher cell yield, faster proliferation times, and greater expression of stemness markers (CD90, CD73). However, mechanical methods preserve greater cellular heterogeneity, representing a viable alternative due to their simplicity of use. In vitro experiments confirmed the multipotency of ASCs, with differentiation capacity into adipocytes, chondrocytes, and osteocytes. Preclinical studies on animal models demonstrated the effectiveness of SVF in treating tendinopathy and osteoarthritis, improving tissue repair and reducing inflammation and pain. In a canine osteoarthritis model, SVF treatment showed superior benefits compared to hyaluronic acid. In parallel, a clinical study on patients with trapezio-metacarpal osteoarthritis evaluated the use of autologous micro-fat grafts (mFAT), obtained through a non-enzymatic method. Results showed a significant reduction in pain and improved joint functionality at 6 and 12 months. Radiographic analyses indicated structural stability, while in vitro studies characterized extracellular vesicles derived from mFAT, demonstrating their ability to modulate pain and reduce inflammation. In conclusion, the use of SVF and mFAT represents an innovative and safe approach for degenerative conditions, opening new perspectives in regenerative medicine. This work helps bridge gaps in the literature and supports the development of minimally invasive treatments for osteoarthritis and other degenerative conditions.File | Dimensione | Formato | |
---|---|---|---|
dottorato_Tesi-DeFrancesco_senzafirme.pdf
embargo fino al 02/10/2025
Dimensione
5.08 MB
Formato
Adobe PDF
|
5.08 MB | Adobe PDF |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/218808
URN:NBN:IT:UNIFE-218808