Often, the role of humidity is overlooked in the analysis of the energy performance of buildings and thermal systems. Nonetheless, the durability of building materials, the safety and health requirements, air quality and thermal-hygrometric comfort in indoor spaces, as well as the effectiveness of space cooling systems, could be strongly affected by the humidity conditions in the surroundings and in the building materials. To this aim, the existing simulation models used in the prediction of building energy performance should incorporate more advanced calculation methods that account for complex phenomena of heat and moisture transfer and storage in building materials. By considering these aspects, the present thesis aims to provide a wide range analysis of the moisture effects on the assessment of the energy performance of buildings. In particular, the investigation pays attention to the design strategy and modeling methodology related to innovative building envelope solutions and cooling system technologies. With this purpose, the following work is divided into two parts. The First Part deals with “Numerical Simulations to Predict Moisture-Related Risks in Building Components”. In more detail, the timber-based retrofit solutions proposed by the e-SAFE project were investigated in terms of moisture-related risks, i.e. the mold growth and the increase in heat losses due to liquid water content within building materials. In order to provide useful design recommendations in a Mediterranean climate, transient combined heat and moisture transport simulations were performed by means of the software tool Delphin 6.1.2. The results recommended using wood fibre insulation as a good compromise to encompass mould-safety and sustainability, even if the moisture content accumulated in its porous structure can increases by up to 12% the conductive heat losses trough the wall constructions. Moreover, a vapor-open waterproof membrane applied to the outer side of the insulation is always suggested, while a vapor barrier in the outer side of the existing wall worsens the mould conditions. Also, the role of the weather dataset in hygrothermal simulations is investigated with the purpose to guarantee reliable results, while accelerating the simulations processing and pre-processing. The results suggested and justified that, especially in case of externally insulated walls, the already available Typical Years can provide a reliable assessment of the moisture-related risks. This does not justify, in terms of time effort, the use of the methodologically more accurate Moisture Reference Years, at least in a Mediterranean climate. The Second Part of this thesis focused on “Design, Experimentation, Modeling, and Building-System Performance Evaluation of a Novel Mixed-Flow Dew-Point Indirect Evaporative Cooling Prototype”. More specifically, a novel prototype was designed and built with the purpose of combining low production costs, low complexity of the equipment, and compactness. The device is a mixed-flow prototype made of polycarbonate sheets with an overall volume of 31 x 25 x 30.5 cm. The prototype was tested and its performance (temperature drop, cooling capacity, and effectiveness) was evaluated under different design and operative conditions. The experiments revealed that the best design options has cotton cloth as wicking material and the water distributor with external nozzles. In this case, the dew-point effectiveness is approximately constant and its average value is 0.2 when the inlet air temperature is 35 °C. The current prototype decreased the inlet air temperature by 2.63 °C per unit of heat transfer area against 0.63 °C/m2 and 1.82 °C/m2 compared to similar configurations studied in the literature. Based on the experimental data, a mathematical model was developed in and implemented in the software TRNSYS 18. The model is sufficiently consistent with the experiments with an error in the primary air temperature drop between 12% and 18%. Also, a parametric analysis confirmed its consistency with the literature and experimental data. Lastly, the performance of the device integrated to a small office sized 2.50 m x 2.50 m × 3.00 m and located in a Mediterranean climate were evaluated. The main results shown that the device significantly reduces the summer indoor air temperature by 4.1°C on average and up to 6.7°C on the hottest days. Also, the indoor thermal discomfort is considerably reduced. Furthermore, the indoor relative humidity never exceeds 60% during the occupancy hours of office work.
Il ruolo dell'umidità viene spesso trascurato nell'analisi delle prestazioni energetiche degli edifici e dei sistemi termici. Tuttavia, la durabilità dei materiali da costruzione, i requisiti di sicurezza e salute, la qualità dell'aria e il comfort termoigrometrico negli spazi interni, nonché l'efficacia dei sistemi di climatizzazione degli spazi, potrebbero essere fortemente influenzati dalle condizioni di umidità nell'ambiente circostante e nei materiali da costruzione. A tal fine, gli attuali modelli di simulazione utilizzati nella predizione delle prestazioni energetiche degli edifici dovrebbero integrare metodi di calcolo più avanzati che tengano conto di fenomeni complessi di trasferimento e di accumulo di calore e umidità nei materiali da costruzione. Considerando questi aspetti, questa tesi mira a fornire un'analisi ad ampio respiro degli effetti dell'umidità sulla valutazione delle prestazioni energetiche degli edifici. In particolare, l'indagine presta attenzione alla strategia di progettazione e alla metodologia di modellazione relative a soluzioni innovative per l'involucro edilizio e tecnologie di sistemi di raffrescamento. A tale scopo, il seguente lavoro si compone di due parti. La prima parte ha come oggetto l’analisi numerica al fine di predire i rischi correlati all'umidità nei componenti edilizi. Più in dettaglio, sono state studiate le soluzioni di retrofit basate sul legno proposte dal progetto e-SAFE in termini di rischi correlati all'umidità, ovvero la crescita di muffe e l'aumento delle dispersioni termiche dovute al contenuto di umidità nei materiali da costruzione. Al fine di fornire utili raccomandazioni progettuali per un clima mediterraneo, sono state eseguite simulazioni dinamiche per il trasporto combinato di calore e umidità mediante il software Delphin 6.1.2. I risultati raccomandano l’utilizzo di un isolamento in fibra di legno, in quanto costituisca un buon compromesso tra mould-safety e sostenibilità, anche se il contenuto di umidità accumulato nella sua struttura porosa potrebbe aumentare fino al 12% le dispersioni termiche attraverso l’involucro. Inoltre, è sempre suggerita una membrana impermeabile traspirante da applicare sul lato esterno dell'isolamento, mentre una barriera al vapore sul lato esterno della parete esistente potrebbe peggiorare il rischio di formazione della muffa. Inoltre, è stato valutato il ruolo del file climatico nelle simulazioni termoigrometriche allo scopo di garantire risultati affidabili, accelerando al contempo le fasi di processing e pre-processing delle simulazioni. I risultati suggeriscono e giustificano l’uso di anni meteo tipo (Typical Years) soprattutto nel caso di pareti isolate esternamente. Diversamente, utilizzare Moisture Reference Years, come suggerito dalle normative e dalla letteratura, non sempre è la scelta più appropriata al fine di accelerare l’esecuzione delle simulazioni, almeno in un clima mediterraneo. La seconda parte di questa tesi si è concentrata sulla "Progettazione, sperimentazione, modellazione e valutazione delle prestazioni del sistema edilizio di un nuovo prototipo di raffreddamento evaporativo indiretto a flusso misto con punto di rugiada". Più specificamente, è stato progettato e costruito un nuovo prototipo che risponda all’obiettivo di combinare bassi costi di produzione, bassa complessità e compattezza. Il dispositivo è un prototipo a flusso misto realizzato con fogli di policarbonato con un volume complessivo di 31 x 25 x 30,5 cm. Il prototipo è stato testato sperimentalmente e le sue prestazioni (salto di temperatura, capacità di raffrescamento ed efficacia) sono state valutate in diverse condizioni di progettazione e operative. Gli esperimenti hanno rivelato che le prestazioni migliori sono ottenute dal prototipo i cui canali secondari sono rivestiti da un tessuto di cotone e avente distributore d'acqua con ugelli esterni. In questo caso, l'efficacia del punto di rugiada è approssimativamente costante e il suo valore medio è 0,2 quando la temperatura dell'aria in ingresso è di 35 °C. L'attuale prototipo ha ridotto la temperatura dell'aria in ingresso di 2,63 °C per unità di area di trasferimento di calore rispetto a 0,63 °C/m2 e 1,82 °C/m2 rispetto a configurazioni simili studiate in letteratura. Sulla base dei dati sperimentali, è stato sviluppato e implementato un modello matematico nel software TRNSYS 18. Il modello è sufficientemente coerente con gli esperimenti con un errore nel salto di temperatura dell'aria primaria tra il 12% e il 18%. Inoltre, un'analisi parametrica ha confermato la sua coerenza con la letteratura e i dati sperimentali. Infine, sono state valutate le prestazioni del dispositivo integrato a un piccolo ufficio di dimensioni 2,50 m x 2,50 m × 3,00 m e situato in un clima mediterraneo. I risultati principali hanno mostrato che il dispositivo riduce significativamente la temperatura dell'aria interna estiva di 4,1°C in media e fino a 6,7°C nei giorni più caldi e lo stress termico interno è notevolmente ridotto. Inoltre, l'umidità relativa interna non supera mai il 60% durante le ore di occupazione del lavoro d'ufficio.
Predictive Modeling for Innovative Design Strategies in Moisture Management in Sustainable Building Envelopes and Evaporative Cooling Systems
URSO, ALESSANDRA
2025
Abstract
Often, the role of humidity is overlooked in the analysis of the energy performance of buildings and thermal systems. Nonetheless, the durability of building materials, the safety and health requirements, air quality and thermal-hygrometric comfort in indoor spaces, as well as the effectiveness of space cooling systems, could be strongly affected by the humidity conditions in the surroundings and in the building materials. To this aim, the existing simulation models used in the prediction of building energy performance should incorporate more advanced calculation methods that account for complex phenomena of heat and moisture transfer and storage in building materials. By considering these aspects, the present thesis aims to provide a wide range analysis of the moisture effects on the assessment of the energy performance of buildings. In particular, the investigation pays attention to the design strategy and modeling methodology related to innovative building envelope solutions and cooling system technologies. With this purpose, the following work is divided into two parts. The First Part deals with “Numerical Simulations to Predict Moisture-Related Risks in Building Components”. In more detail, the timber-based retrofit solutions proposed by the e-SAFE project were investigated in terms of moisture-related risks, i.e. the mold growth and the increase in heat losses due to liquid water content within building materials. In order to provide useful design recommendations in a Mediterranean climate, transient combined heat and moisture transport simulations were performed by means of the software tool Delphin 6.1.2. The results recommended using wood fibre insulation as a good compromise to encompass mould-safety and sustainability, even if the moisture content accumulated in its porous structure can increases by up to 12% the conductive heat losses trough the wall constructions. Moreover, a vapor-open waterproof membrane applied to the outer side of the insulation is always suggested, while a vapor barrier in the outer side of the existing wall worsens the mould conditions. Also, the role of the weather dataset in hygrothermal simulations is investigated with the purpose to guarantee reliable results, while accelerating the simulations processing and pre-processing. The results suggested and justified that, especially in case of externally insulated walls, the already available Typical Years can provide a reliable assessment of the moisture-related risks. This does not justify, in terms of time effort, the use of the methodologically more accurate Moisture Reference Years, at least in a Mediterranean climate. The Second Part of this thesis focused on “Design, Experimentation, Modeling, and Building-System Performance Evaluation of a Novel Mixed-Flow Dew-Point Indirect Evaporative Cooling Prototype”. More specifically, a novel prototype was designed and built with the purpose of combining low production costs, low complexity of the equipment, and compactness. The device is a mixed-flow prototype made of polycarbonate sheets with an overall volume of 31 x 25 x 30.5 cm. The prototype was tested and its performance (temperature drop, cooling capacity, and effectiveness) was evaluated under different design and operative conditions. The experiments revealed that the best design options has cotton cloth as wicking material and the water distributor with external nozzles. In this case, the dew-point effectiveness is approximately constant and its average value is 0.2 when the inlet air temperature is 35 °C. The current prototype decreased the inlet air temperature by 2.63 °C per unit of heat transfer area against 0.63 °C/m2 and 1.82 °C/m2 compared to similar configurations studied in the literature. Based on the experimental data, a mathematical model was developed in and implemented in the software TRNSYS 18. The model is sufficiently consistent with the experiments with an error in the primary air temperature drop between 12% and 18%. Also, a parametric analysis confirmed its consistency with the literature and experimental data. Lastly, the performance of the device integrated to a small office sized 2.50 m x 2.50 m × 3.00 m and located in a Mediterranean climate were evaluated. The main results shown that the device significantly reduces the summer indoor air temperature by 4.1°C on average and up to 6.7°C on the hottest days. Also, the indoor thermal discomfort is considerably reduced. Furthermore, the indoor relative humidity never exceeds 60% during the occupancy hours of office work.File | Dimensione | Formato | |
---|---|---|---|
Tesi_URSO.pdf
accesso aperto
Dimensione
54.96 MB
Formato
Adobe PDF
|
54.96 MB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/218847
URN:NBN:IT:UNICT-218847