Duchenne muscular dystrophy (DMD) is an X-linked genetic disorder caused by mutations in the DMD gene, which is critical for the production of dystrophin. This structural protein plays a key role in maintaining the stability of muscle fibers and protecting them from damage during muscle contractions. About 65 percent of these mutations consist of large deletions that disrupt the reading frame of the DMD gene, resulting in the absence of dystrophin, progressive muscle deterioration and fibrotic tissue replacement. Despite a well-understood genetic basis, no definitive cure exists. Among emerging therapies, exon skipping using antisense oligonucleotides (ASOs) is a promising approach. ASOs target pre-mRNA to restore the reading frame, facilitating the production of a truncated yet functional dystrophin, as in Becker muscular dystrophy (BMD). This strategy presents some challenges, such as limited cellular uptake, rapid elimination in the bloodstream, and toxicity, necessitating the development of advanced delivery systems to improve cellular uptake and reduce side effects. Recent research has shown that exosomes (EXOs), small vesicles produced by various cell types, could serve as natural carriers for macromolecules such as lipids, proteins, nucleic acids and microRNAs. EXOs offer advantages such as high transport specificity and adaptive carrying capacity. Previous reasearch from our group showed that antisense oligonucleotides 2'O methyl phosphorothioate (2'OMePS) are particularly effective in skipping exon 51 of the DMD gene when conjugated to ursodeoxycholic acid (UDCA). We hypothesize that the lipophilic nature of UDC-ASO may enhance its encapsulation within EXOs, improving its bioavailability and therapeutic potential. Our study evaluated the feasebility of EXOs as natural carriers of UDCA-ASO to restore dystrophin expression and muscle function. The 5'UDC-m23D showed improved biodistribution and accumulation in muscle tissue, especially in the diaphragm, increasing exon skipping efficiency and dystrophin restoration, however, with limitations in blood-brain barrier (BBB) crossing and safety profile. The use of exosomes has shown an increasing exon-skipping in human muscle cell lines but not in murine muscle cell lines, showing a difference between species. While, milk-EXO complexes showed a high capacity to cross the intestinal barrier in vitro, but with poor skipping efficiency compared to gymnosis. In vivo studies showed a poor safety profile of these therapies, indicating the need for preclinical studies to increase safety and therapeutic efficiency, before moving to clinical applications. Overcoming these challenges, exosome-based ASO delivery systems, especially if conjugated with UDCA, could innovate approaches in the treatment of DMD, bringing new hope to patients.
La distrofia muscolare di Duchenne (DMD) è un disturbo genetico legato al cromosoma X causato da mutazioni nel gene DMD, essenziale per la produzione della distrofina. Questa proteina strutturale svolge un ruolo chiave nel mantenimento della stabilità delle fibre muscolari proteggendole da danni durante le contrazioni muscolari. Circa il 65% delle mutazioni è rappresentato da ampie delezioni che interrompono il frame di lettura del gene DMD, determinando l'assenza di distrofina, una progressiva degenerazione muscolare e la sostituzione del tessuto muscolare con tessuto fibrotico.Nonostante la base genetica della malattia sia ben compresa, non esiste una cura definitiva. Tra le terapie emergenti, una delle più promettenti è l’exon skipping il quale utilizza oligonucleotidi antisenso (ASO). Gli ASO agiscono sul pre-mRNA per ripristinare il frame di lettura, consentendo la produzione di una distrofina tronca ma funzionale, come avviene nella distrofia muscolare di Becker (BMD). Tuttavia, questa strategia presenta alcune difficoltà, tra cui scarso assorbimento cellulare, rapida eliminazione nel sangue e tossicità, rendendo necessaria la ricerca di sistemi di somministrazione avanzati per migliorarne l’efficacia e ridurre gli effetti collaterali. Studi recenti hanno dimostrato che gli esosomi (EXOs), piccole vescicole prodotte da diverse tipologie di cellule, potrebbero essere usati come trasportatori naturali per macromolecole come lipidi, proteine, acidi nucleici e microRNA. Gli EXOs offrono vantaggi come alta specificità di trasporto e capacità adattiva di carico. Studi precedenti del nostro gruppo hanno dimostrato che oligonucleotidi antisenso 2'O metil fosforotioato (2'OMePS) sono particolarmente efficaci nell’exonskipping dell’esone 51 del gene DMD quando coniugati con acido ursodesossicolico (UDCA-ASO). Ipotizziamo che la natura lipofila dell’UDC-ASO possa migliorarne l’incapsulamento negli esosomi, aumentando la biodisponibilità e il potenziale terapeutico.Il nostro studio ha valutato la possibilità di utilizzare gli EXOs come trasportatori naturali di UDCAASO per ripristinare l'espressione della distrofina e la funzionalità muscolare. Il 5'UDC-m23D ha mostrato un miglioramento nella biodistribuzione e nell’accumulo nel tessuto muscolare, soprattutto nel diaframma, aumentando l'efficacia dell’exon-skippinge il restore della distrofina. Tuttavia, ha mostrato limitazioni nel superamento della barriera emato-encefalica (BBB) e nel profilo di sicurezza. L'uso degli EXOs ha evidenziato un incremento dell’exon-skippingnelle linee cellulari muscolari umane, ma non in quelle murine, evidenziando differenze tra le specie. Inoltre, i complessi milk-EXOs hanno dimostrato una buona capacità di attraversare la barriera intestinale in vitro, ma con bassa efficienza di exon-skipping rispetto alla gimnosi. Gli studi in vivo hanno evidenziato un profilo di sicurezza non ottimale, indicando la necessità di ulteriori studi preclinici per aumentare la sicurezza e l’efficacia terapeutica prima dell’applicazione clinica. Superando queste sfide, i sistemi di rilascio di ASO basati su EXOs, specialmente se coniugati con UDCA, potrebbero rappresentare un’innovazione terapeutica per la DMD, offrendo nuove speranze ai pazienti.
Development of a new non-viral vehicles for an innovative therapeutic strategy in personalized medicine of neuromuscular disorders
FAIELLA, MARIKA
2025
Abstract
Duchenne muscular dystrophy (DMD) is an X-linked genetic disorder caused by mutations in the DMD gene, which is critical for the production of dystrophin. This structural protein plays a key role in maintaining the stability of muscle fibers and protecting them from damage during muscle contractions. About 65 percent of these mutations consist of large deletions that disrupt the reading frame of the DMD gene, resulting in the absence of dystrophin, progressive muscle deterioration and fibrotic tissue replacement. Despite a well-understood genetic basis, no definitive cure exists. Among emerging therapies, exon skipping using antisense oligonucleotides (ASOs) is a promising approach. ASOs target pre-mRNA to restore the reading frame, facilitating the production of a truncated yet functional dystrophin, as in Becker muscular dystrophy (BMD). This strategy presents some challenges, such as limited cellular uptake, rapid elimination in the bloodstream, and toxicity, necessitating the development of advanced delivery systems to improve cellular uptake and reduce side effects. Recent research has shown that exosomes (EXOs), small vesicles produced by various cell types, could serve as natural carriers for macromolecules such as lipids, proteins, nucleic acids and microRNAs. EXOs offer advantages such as high transport specificity and adaptive carrying capacity. Previous reasearch from our group showed that antisense oligonucleotides 2'O methyl phosphorothioate (2'OMePS) are particularly effective in skipping exon 51 of the DMD gene when conjugated to ursodeoxycholic acid (UDCA). We hypothesize that the lipophilic nature of UDC-ASO may enhance its encapsulation within EXOs, improving its bioavailability and therapeutic potential. Our study evaluated the feasebility of EXOs as natural carriers of UDCA-ASO to restore dystrophin expression and muscle function. The 5'UDC-m23D showed improved biodistribution and accumulation in muscle tissue, especially in the diaphragm, increasing exon skipping efficiency and dystrophin restoration, however, with limitations in blood-brain barrier (BBB) crossing and safety profile. The use of exosomes has shown an increasing exon-skipping in human muscle cell lines but not in murine muscle cell lines, showing a difference between species. While, milk-EXO complexes showed a high capacity to cross the intestinal barrier in vitro, but with poor skipping efficiency compared to gymnosis. In vivo studies showed a poor safety profile of these therapies, indicating the need for preclinical studies to increase safety and therapeutic efficiency, before moving to clinical applications. Overcoming these challenges, exosome-based ASO delivery systems, especially if conjugated with UDCA, could innovate approaches in the treatment of DMD, bringing new hope to patients.File | Dimensione | Formato | |
---|---|---|---|
PhD Thesis Faiella.pdf
accesso aperto
Dimensione
10.35 MB
Formato
Adobe PDF
|
10.35 MB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/219506
URN:NBN:IT:UNIFE-219506