Alzheimer’s Disease (AD) is the most common cause of dementia, affecting 60-70% of cases, and poses a significant global health challenge. With rising life expectancy the elderly population is growing which could result in an estimated 132 million AD patients worldwide by mid-century particularly in low- and middle-income countries. AD is marked by the buildup of Senile Plaques (SP) outside neurons and Neurofibrillary Tangles (NFTs) inside them disrupting neural circuits and leading to cognitive decline. Recent studies highlight neuroinflammation, driven by microglia and astrocytes in response to SP and NFTs, as a key factor in the AD onset and progression. Additionally SP and NFTs impair neuronal energy supply and mitochondrial function resulting in reduced Adenosine Triphosphate (ATP) production and increased Reactive Oxygen Species (ROS). In AD increased ROS production and decreased antioxidant defenses cause oxidative damage contributing to disease progression. AD lacks a specific pharmacological cure. Current medications can only alleviate symptoms or slow early progression as they do not stop its degenerative process. Pulsed Electromagnetic Fields (PEMFs) are a non-invasive therapy for inflammatory diseases and have Food and Drug Administration approval for use in conditions like bone fractures, osteoporosis and arthritis. Research indicates that PEMFs can reduce inflammation, protect neurons, promote angiogenesis and enhance neuronal plasticity suggesting potential benefits for neurodegenerative diseases such as AD. Although the benefits of PEMFs have been noted in various conditions the mechanisms behind these effects remain unclear. The aim of this work was to investigate the cellular and molecular mechanisms involved in the positive effect of PEMFs therapy. In particular in Chapter 1 mitochondrial integrity, oxidative stress and cell survival in SH-SY5Y neuronal cells were studied. Chapter 2 focused on the analysis of the same parameters on N9 microglial cells. The results obtained during this PhD project demonstrate that PEMFs have a neuroprotective role in SH-SY5Y neuronal cells and N9 microglia cells following toxic insults induced by H2O2 and Aβ1-42 used to mimic AD conditions. In particular they are able to increase cell viability, to influence the redox state of cells by reducing ROS levels and to reduce mitochondrial damage. The results of these studies could provide a basis for further research on the molecular mechanisms underlying the neuroprotective effects of PEMFs. However further scientific investigations in vivo and/or in vitro on the neurophysiological implications of PEMFs and their mechanisms of action will be necessary.
La malattia di Alzheimer (AD) è la causa più comune di demenza, colpisce il 60-70% dei casi e rappresenta una sfida significativa per la salute globale. Con l'aumento dell'aspettativa di vita, la popolazione anziana è in crescita, il che potrebbe portare a circa 132 milioni di pazienti con AD in tutto il mondo entro la metà del secolo, in particolare nei paesi a basso e medio reddito. L'AD è caratterizzata dall'accumulo di Placche Senili (SP) all'esterno dei neuroni e di Grovigli Neurofibrillari (NFT) al loro interno, che interrompono i circuiti neurali e portano al declino cognitivo. Studi recenti evidenziano la neuroinfiammazione, guidata da microglia e astrociti in risposta a SP e NFT, come un fattore chiave nell'insorgenza e nella progressione dell'AD. Inoltre, SP e NFT compromettono l'approvvigionamento energetico neuronale e la funzione mitocondriale, con conseguente riduzione della produzione di Adenosina Trifosfato (ATP) e aumento delle Specie Reattive dell'Ossigeno (ROS). Nell'AD, l'aumento della produzione di ROS e la diminuzione delle difese antiossidanti causano danni ossidativi che contribuiscono alla progressione della malattia. L'AD non ha una cura farmacologica specifica. I farmaci attuali possono solo alleviare i sintomi o rallentare la progressione precoce poiché non ne arrestano il processo degenerativo. I Campi Elettromagnetici Pulsati (PEMF) sono una terapia non invasiva per le malattie infiammatorie e hanno l'approvazione della Food and Drug Administration per l'uso in condizioni come fratture ossee, osteoporosi e artrite. La ricerca indica che i PEMF possono ridurre l'infiammazione, proteggere i neuroni, promuovere l'angiogenesi e migliorare la plasticità neuronale, suggerendo potenziali benefici per le malattie neurodegenerative come l'AD. Sebbene i benefici dei PEMF siano stati notati in varie condizioni, i meccanismi alla base di questi effetti rimangono poco chiari. Lo scopo di questo lavoro era di indagare i meccanismi cellulari e molecolari coinvolti nell'effetto positivo della terapia con PEMF. In particolare, nel Capitolo 1 sono stati studiati l'integrità mitocondriale, lo stress ossidativo e la sopravvivenza cellulare nelle cellule neuronali SH-SY5Y. Il Capitolo 2 si è concentrato sull'analisi degli stessi parametri sulle cellule microgliali N9. I risultati ottenuti durante questo progetto di dottorato dimostrano che i PEMF hanno un ruolo neuroprotettivo nelle cellule neuronali SH-SY5Y e nelle cellule microgliali N9 a seguito di insulti tossici indotti da H2O2 e Aβ1-42 utilizzati per imitare le condizioni di AD. In particolare, sono in grado di aumentare la vitalità cellulare, di influenzare lo stato redox delle cellule riducendo i livelli di ROS e di ridurre il danno mitocondriale. I risultati di questi studi potrebbero fornire una base per ulteriori ricerche sui meccanismi molecolari alla base degli effetti neuroprotettivi dei PEMF. Saranno tuttavia necessarie ulteriori indagini scientifiche in vivo e/o in vitro sulle implicazioni neurofisiologiche dei campi elettromagnetici pulsati (PEMF) e sui loro meccanismi d'azione.
Effect of Low-Frequency, Low-Energy Pulsed Electromagnetic Fields (PEMFs) in Injured Neuronal and Microglial Cells Models of Alzheimer’s Disease
NIGRO, Manuela
2025
Abstract
Alzheimer’s Disease (AD) is the most common cause of dementia, affecting 60-70% of cases, and poses a significant global health challenge. With rising life expectancy the elderly population is growing which could result in an estimated 132 million AD patients worldwide by mid-century particularly in low- and middle-income countries. AD is marked by the buildup of Senile Plaques (SP) outside neurons and Neurofibrillary Tangles (NFTs) inside them disrupting neural circuits and leading to cognitive decline. Recent studies highlight neuroinflammation, driven by microglia and astrocytes in response to SP and NFTs, as a key factor in the AD onset and progression. Additionally SP and NFTs impair neuronal energy supply and mitochondrial function resulting in reduced Adenosine Triphosphate (ATP) production and increased Reactive Oxygen Species (ROS). In AD increased ROS production and decreased antioxidant defenses cause oxidative damage contributing to disease progression. AD lacks a specific pharmacological cure. Current medications can only alleviate symptoms or slow early progression as they do not stop its degenerative process. Pulsed Electromagnetic Fields (PEMFs) are a non-invasive therapy for inflammatory diseases and have Food and Drug Administration approval for use in conditions like bone fractures, osteoporosis and arthritis. Research indicates that PEMFs can reduce inflammation, protect neurons, promote angiogenesis and enhance neuronal plasticity suggesting potential benefits for neurodegenerative diseases such as AD. Although the benefits of PEMFs have been noted in various conditions the mechanisms behind these effects remain unclear. The aim of this work was to investigate the cellular and molecular mechanisms involved in the positive effect of PEMFs therapy. In particular in Chapter 1 mitochondrial integrity, oxidative stress and cell survival in SH-SY5Y neuronal cells were studied. Chapter 2 focused on the analysis of the same parameters on N9 microglial cells. The results obtained during this PhD project demonstrate that PEMFs have a neuroprotective role in SH-SY5Y neuronal cells and N9 microglia cells following toxic insults induced by H2O2 and Aβ1-42 used to mimic AD conditions. In particular they are able to increase cell viability, to influence the redox state of cells by reducing ROS levels and to reduce mitochondrial damage. The results of these studies could provide a basis for further research on the molecular mechanisms underlying the neuroprotective effects of PEMFs. However further scientific investigations in vivo and/or in vitro on the neurophysiological implications of PEMFs and their mechanisms of action will be necessary.File | Dimensione | Formato | |
---|---|---|---|
Tesi Dottorato - Manuela Nigro.pdf
accesso aperto
Dimensione
2.99 MB
Formato
Adobe PDF
|
2.99 MB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/219513
URN:NBN:IT:UNIFE-219513