Herpes simplex virus (HSV) is a widespread pathogen that causes lifelong infections with potentially severe complications, such as keratitis and encephalitis. These risks are particularly high in immunocompromised individuals and newborns. HSV’s ability to establish latency and undergo periodic reactivation, combined with its advanced immune evasion mechanisms, poses significant challenges to vaccine development. Despite numerous attempts, previous vaccine candidates have shown limited success in clinical trials, often providing only partial protection. This highlights the urgent need for a better understanding of the immunological mechanisms required to reach robust and lasting immunity against HSV. Achieving this goal requires a comprehensive, multidisciplinary approach to address existing gaps in our understanding of HSV biology and immune responses. In this context, my research focuses on two complementary objectives: first, to investigate how the ICP27 protein of HSV-1 enables immune evasion; and second, to evaluate the potential of the replication-defective HSV-1-based vector T0TatGFP as a preventive vaccine against herpetic infection. A key focus of my work was investigating how the ICP27 protein of HSV inhibits the activation of the AIM 2 inflammasome pathway. This inhibition allows the virus to evade the host's innate immune defenses by reducing the release of pro-inflammatory interleukins 1β and 18. Therefore, since herpetic viral vectors can potentially boost immune responses through inflammasome activation, understanding the role of the ICP27 protein as an immune evasion factor provides valuable insights into HSV biology. These findings could be leveraged to design more effective vaccine strategies. Another significant aspect of my work was evaluating the in vivo efficacy of the T0TatGFP viral vector as a preventive vaccine against HSV infection. T0TatGFP is a replication-defective HSV- based vector engineered to lack key genes such as ICP27, ICP4, ICP22, and UL41. It has been further modified to express the Tat protein of HIV, which may act as a potent adjuvant by enhancing both innate and adaptative immune responses. Our findings demonstrated that T0TatGFP offers superior protection against an intravaginal challenge with wild-type HSV-1, particularly in the long term. Immunogenicity assessments revealed that immunization with T0TatGFP elicited a robust Th1 response and enhanced immune cell infiltration at the mucosal level, underscoring its potential as a vaccine candidate. Collectively, these findings underscore the critical role of the Tat protein expressed by the vector in stimulating both humoral and cellular immunity, with a particular emphasis on long- term immune responses. In conclusion, this research seeks to deepen our understanding of the intricate interactions between the herpes simplex virus and the host immune system. By uncovering mechanisms of immune evasion and exploring innovative vaccine strategies, it contributes to a deeper understanding of HSV biology. These findings pave the way for the development of more effective and targeted vaccines, bringing us closer to overcoming the significant challenges posed by this persistent and elusive virus.
Il virus herpes simplex (HSV) è un patogeno estremamente diffuso che stabilisce interazioni a lungo termine con l’ospite e può causare complicazioni gravi, quali cheratite ed encefalite, con rischi particolarmente elevati nei soggetti immunocompromessi e nei neonati. La capacità di HSV di stabilire uno stato di latenza e di riattivarsi periodicamente, unita ai suoi sofisticati meccanismi di evasione immunitaria, rappresenta una sfida significativa per lo sviluppo di vaccini efficaci. Nonostante i numerosi tentativi, infatti, i candidati vaccinali testati finora hanno ottenuto successi limitati negli studi clinici, offrendo una protezione spesso solo parziale. Questo evidenzia l’urgente necessità di approfondire i meccanismi immunologici essenziali per ottenere un’immunità robusta e duratura contro l’HSV. Affrontare questa sfida richiede un approccio globale e multidisciplinare per colmare le lacune attuali nella comprensione della biologia del virus e delle risposte immunitarie dell’ospite. In questo contesto, la mia ricerca si concentra su due obiettivi complementari: da un lato, lo studio del ruolo della proteina ICP27 dell’HSV-1 nell’evasione della risposta immunitaria; dall’altro, la valutazione del vettore virale erpetico non replicativo T0TatGFP come vaccino preventivo contro l’infezione erpetica. Un aspetto chiave del mio lavoro è stato l’analisi del meccanismo mediante il quale la proteina ICP27 dell’HSV-1 inibisce l’attivazione dell’inflammasoma AIM 2, contribuendo così all’evasione delle difese immunitarie innate dell’ospite. Questa inibizione, infatti, riduce il rilascio dell’interleuchina- 1β e dell’interleuchina-18, permettendo al virus di ridurre l’attivazione della risposta immunitaria. Poiché i vettori virali erpetici possono potenziare le risposte immunitarie attraverso l’attivazione dell’inflammasoma, la comprensione del ruolo di ICP27 come fattore di evasione immunitaria offre preziose indicazioni sulla biologia dell’HSV e potrebbe guidare lo sviluppo di strategie vaccinali più efficaci. Un altro elemento significativo della mia ricerca è stata la valutazione in vivo dell’efficacia del vettore virale T0TatGFP come vaccino preventivo contro l’infezione da HSV. T0TatGFP è un vettore non replicativo derivato da HSV-1, modificato eliminando i geni ICP4, ICP22 e ICP27 e sostituendo il gene UL41 con il gene Tat dell’HIV che codifica per l’omonima proteina nota per il suo potenziale adiuvante nel rafforzare le risposte immunitarie innate e adattative. I nostri risultati hanno dimostrato che T0TatGFP offre una protezione superiore contro un’infezione intravaginale da HSV-1 wild-type, in particolare a lungo termine. Le analisi di immunogenicità hanno rivelato che l’immunizzazione con T0TatGFP induce una robusta risposta di tipo Th1 e un’infiltrazione aumentata di cellule immunitarie a livello del sito di infezione, evidenziando il suo potenziale come candidato vaccinale. Nel complesso, questi dati sottolineano il ruolo critico della proteina Tat nell’attivazione dell’immunità sia umorale che cellulare, con un impatto significativo sulla durata della risposta immunitaria. In conclusione, questa ricerca mira a migliorare la comprensione delle complesse interazioni tra il virus herpes simplex e il sistema immunitario dell’ospite. Approfondendo i meccanismi di evasione immunitaria e esplorando nuove strategie vaccinali, il lavoro contribuisce a delineare approcci innovativi per il controllo dell’HSV. I risultati ottenuti aprono nuove prospettive per lo sviluppo di vaccini più efficaci e mirati, avvicinandoci alla possibilità di contrastare in modo definitivo questo virus persistente ed elusivo.
Herpes Simplex Virus Vaccines: Research on Enhancing Protection by Optimizing Immune Response
CAPRONI, ANNA
2025
Abstract
Herpes simplex virus (HSV) is a widespread pathogen that causes lifelong infections with potentially severe complications, such as keratitis and encephalitis. These risks are particularly high in immunocompromised individuals and newborns. HSV’s ability to establish latency and undergo periodic reactivation, combined with its advanced immune evasion mechanisms, poses significant challenges to vaccine development. Despite numerous attempts, previous vaccine candidates have shown limited success in clinical trials, often providing only partial protection. This highlights the urgent need for a better understanding of the immunological mechanisms required to reach robust and lasting immunity against HSV. Achieving this goal requires a comprehensive, multidisciplinary approach to address existing gaps in our understanding of HSV biology and immune responses. In this context, my research focuses on two complementary objectives: first, to investigate how the ICP27 protein of HSV-1 enables immune evasion; and second, to evaluate the potential of the replication-defective HSV-1-based vector T0TatGFP as a preventive vaccine against herpetic infection. A key focus of my work was investigating how the ICP27 protein of HSV inhibits the activation of the AIM 2 inflammasome pathway. This inhibition allows the virus to evade the host's innate immune defenses by reducing the release of pro-inflammatory interleukins 1β and 18. Therefore, since herpetic viral vectors can potentially boost immune responses through inflammasome activation, understanding the role of the ICP27 protein as an immune evasion factor provides valuable insights into HSV biology. These findings could be leveraged to design more effective vaccine strategies. Another significant aspect of my work was evaluating the in vivo efficacy of the T0TatGFP viral vector as a preventive vaccine against HSV infection. T0TatGFP is a replication-defective HSV- based vector engineered to lack key genes such as ICP27, ICP4, ICP22, and UL41. It has been further modified to express the Tat protein of HIV, which may act as a potent adjuvant by enhancing both innate and adaptative immune responses. Our findings demonstrated that T0TatGFP offers superior protection against an intravaginal challenge with wild-type HSV-1, particularly in the long term. Immunogenicity assessments revealed that immunization with T0TatGFP elicited a robust Th1 response and enhanced immune cell infiltration at the mucosal level, underscoring its potential as a vaccine candidate. Collectively, these findings underscore the critical role of the Tat protein expressed by the vector in stimulating both humoral and cellular immunity, with a particular emphasis on long- term immune responses. In conclusion, this research seeks to deepen our understanding of the intricate interactions between the herpes simplex virus and the host immune system. By uncovering mechanisms of immune evasion and exploring innovative vaccine strategies, it contributes to a deeper understanding of HSV biology. These findings pave the way for the development of more effective and targeted vaccines, bringing us closer to overcoming the significant challenges posed by this persistent and elusive virus.File | Dimensione | Formato | |
---|---|---|---|
PhDThesis_CaproniAnna.pdf
embargo fino al 10/04/2026
Dimensione
3.81 MB
Formato
Adobe PDF
|
3.81 MB | Adobe PDF |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/219518
URN:NBN:IT:UNIFE-219518