X-ray spectroscopy has become an indispensable tool in modern scientific research, contributing to advancements across diverse fields such as materials science, environmental studies, and biomedical research. As X-ray sources continue to evolve, especially synchrotron light ones, reaching unprecedented levels of brilliance, there is a pressing need for detection systems capable of matching these intense X-ray fluxes. This thesis presents the development and optimization of advanced X-ray detection systems based on Silicon Drift Detectors (SDDs) monolithic arrays for synchrotron applications, with a focus on enhancing both geometric efficiency and count rate capabilities. The research centers on two main projects: the enhancement of the ARDESIA-16 spectrometer and the development of a novel detector called ASCANIO. An ARDESIA-16 prototype has been successfully installed at the P06 beamline of the DESY synchrotron (GERMANY), contributing to scientific progress in various sectors, including environmental sciences. An important contribution of this work is the development of ARDESIA-16 V3, which addresses key challenges in vacuum stability and outgassing. The new version incorporates ultra-high vacuum compatible materials and a redesigned mechanical structure, enabling the use of ion pumps and eliminating vibration issues associated with turbopumps. Despite these modifications, the spectrometer maintains its excellent spectroscopic performance, with energy resolutions of ≤190.3 eV at short peaking times (32 ns) and ≤146 eV at longer peaking times (1 μs) at the Mn-Kα peak. As detailed in Chapters 4 and 5, the ASCANIO detector represents a new advancement in X-ray detection technology, featuring an innovative backscattering geometry with tilted SDD arrays. This design demonstrates potential to achieve a solid angle of 1 sr at 8 mm sample distance and output count rates exceeding 20 Mcps. A major technical achievement was the successful integration of 1 mm-thick SDD arrays with molybdenum collimators, overcoming challenges in assembly, thermal management, and crosstalk mitigation. Extensive characterization of both systems was conducted, including vacuum and cooling performance tests, as described in Chapters 4 and 5. The ASCANIO prototype achieved pressures of 2×10⁻⁵ mbar and detector temperatures as low as -45.9°C under vacuum conditions. Energy resolutions below 140 eV FWHM at the Mn-Kα peak were demonstrated for 1 mm-thick SDD arrays. This research has laid the groundwork for future refinements in SDD-based spectrometers, including conceiving a novel monolithic 16-channel SDD array with trapezoidal-shaped pixels. This innovative design promises to optimize solid angle coverage and enhance detector performance in backscattering geometry. The advanced detectors developed through this work are positioned to play a pivotal role in fully harnessing the capabilities of next-generation synchrotron light sources. By pushing the boundaries of X-ray detection technology, these innovations have the potential to accelerate scientific discoveries across a wide spectrum of disciplines, from materials science to environmental studies and beyond.
La spettroscopia a raggi X è diventata uno strumento indispensabile nella ricerca scientifica moderna, contribuendo a progressi in diversi campi come la scienza dei materiali, gli studi ambientali e la ricerca biomedica. Con l'evoluzione delle sorgenti di raggi X, in particolare quelle di luce di sincrotrone, che raggiungono livelli di brillanza senza precedenti, c'è una pressante necessità di sistemi di rivelazione capaci di gestire intensi flussi di raggi X. Questa tesi presenta lo sviluppo e l'ottimizzazione di sistemi avanzati di rivelazione a raggi X basati su array monolitici di Silicon Drift Detectors (SDD) per applicazioni con sincrotrone, con particolare attenzione al miglioramento sia dell'efficienza geometrica che delle capacità di conteggio. La ricerca si concentra su due progetti principali: il potenziamento dello spettrometro ARDESIA-16 e lo sviluppo di un nuovo rivelatore chiamato ASCANIO. Un prototipo di ARDESIA-16 è stato installato con successo presso la linea di luce P06 del sincrotrone DESY (GERMANIA), contribuendo al progresso scientifico in vari settori, incluse le scienze ambientali. Un importante contributo di questo lavoro è lo sviluppo di ARDESIA-16 V3, che affronta le sfide chiave nella stabilità del vuoto e nel degassamento. La nuova versione incorpora materiali compatibili con l'ultra-alto vuoto e una struttura meccanica riprogettata, permettendo l'uso di pompe ioniche ed eliminando i problemi di vibrazione associati alle turbopompe. Nonostante queste modifiche, lo spettrometro mantiene le sue eccellenti prestazioni spettroscopiche, con risoluzioni energetiche di ≤190.3 eV a tempi di picco brevi (32 ns) e ≤146 eV a tempi di picco più lunghi (1 μs) al picco Mn-Kα. Come dettagliato nei Capitoli 4 e 5, il rivelatore ASCANIO rappresenta un nuovo avanzamento nella tecnologia di rivelazione a raggi X, caratterizzato da una innovativa geometria di retrodiffusione con array SDD inclinati. Questo design dimostra il potenziale per raggiungere un angolo solido di 1 sr a 8 mm di distanza dal campione e velocità di conteggio in uscita superiori a 20 Mcps. Un importante risultato tecnico è stato l'integrazione di array SDD spessi 1 mm con collimatori in molibdeno, superando le sfide nell'assemblaggio, nella gestione termica e nella mitigazione del crosstalk. È stata condotta un'ampia caratterizzazione di entrambi i sistemi, inclusi test delle prestazioni del vuoto e del raffreddamento, come descritto nei Capitoli 4 e 5. Il prototipo ASCANIO ha raggiunto pressioni di 2×10⁻⁵ mbar e temperature del rivelatore fino a -45.9°C in condizioni di vuoto. Sono state dimostrate risoluzioni energetiche inferiori a 140 eV FWHM al picco Mn-Kα per array SDD spessi 1 mm. Questa ricerca ha posto le basi per futuri perfezionamenti negli spettrometri basati su SDD, inclusa la concezione di un nuovo array SDD monolitico a 16 canali con pixel trapezoidali. Questo design innovativo promette di ottimizzare la copertura dell'angolo solido e migliorare le prestazioni del rivelatore in geometria di retrodiffusione. I rivelatori avanzati sviluppati attraverso questo lavoro potranno svolgere un ruolo fondamentale nel pieno sfruttamento delle sorgenti di luce di sincrotrone di prossima generazione. Spingendo i confini della tecnologia di rivelazione a raggi X, queste innovazioni hanno il potenziale per accelerare le scoperte scientifiche in un ampio spettro di discipline, dalla scienza dei materiali agli studi ambientali e oltre.
Advanced X-ray detection systems for synchrotron applications based on monolithic arrays of silicon drift detectors
Giacomo, Ticchi
2025
Abstract
X-ray spectroscopy has become an indispensable tool in modern scientific research, contributing to advancements across diverse fields such as materials science, environmental studies, and biomedical research. As X-ray sources continue to evolve, especially synchrotron light ones, reaching unprecedented levels of brilliance, there is a pressing need for detection systems capable of matching these intense X-ray fluxes. This thesis presents the development and optimization of advanced X-ray detection systems based on Silicon Drift Detectors (SDDs) monolithic arrays for synchrotron applications, with a focus on enhancing both geometric efficiency and count rate capabilities. The research centers on two main projects: the enhancement of the ARDESIA-16 spectrometer and the development of a novel detector called ASCANIO. An ARDESIA-16 prototype has been successfully installed at the P06 beamline of the DESY synchrotron (GERMANY), contributing to scientific progress in various sectors, including environmental sciences. An important contribution of this work is the development of ARDESIA-16 V3, which addresses key challenges in vacuum stability and outgassing. The new version incorporates ultra-high vacuum compatible materials and a redesigned mechanical structure, enabling the use of ion pumps and eliminating vibration issues associated with turbopumps. Despite these modifications, the spectrometer maintains its excellent spectroscopic performance, with energy resolutions of ≤190.3 eV at short peaking times (32 ns) and ≤146 eV at longer peaking times (1 μs) at the Mn-Kα peak. As detailed in Chapters 4 and 5, the ASCANIO detector represents a new advancement in X-ray detection technology, featuring an innovative backscattering geometry with tilted SDD arrays. This design demonstrates potential to achieve a solid angle of 1 sr at 8 mm sample distance and output count rates exceeding 20 Mcps. A major technical achievement was the successful integration of 1 mm-thick SDD arrays with molybdenum collimators, overcoming challenges in assembly, thermal management, and crosstalk mitigation. Extensive characterization of both systems was conducted, including vacuum and cooling performance tests, as described in Chapters 4 and 5. The ASCANIO prototype achieved pressures of 2×10⁻⁵ mbar and detector temperatures as low as -45.9°C under vacuum conditions. Energy resolutions below 140 eV FWHM at the Mn-Kα peak were demonstrated for 1 mm-thick SDD arrays. This research has laid the groundwork for future refinements in SDD-based spectrometers, including conceiving a novel monolithic 16-channel SDD array with trapezoidal-shaped pixels. This innovative design promises to optimize solid angle coverage and enhance detector performance in backscattering geometry. The advanced detectors developed through this work are positioned to play a pivotal role in fully harnessing the capabilities of next-generation synchrotron light sources. By pushing the boundaries of X-ray detection technology, these innovations have the potential to accelerate scientific discoveries across a wide spectrum of disciplines, from materials science to environmental studies and beyond.File | Dimensione | Formato | |
---|---|---|---|
PhD_GiacomoTicchi.pdf
accesso solo da BNCF e BNCR
Dimensione
49.01 MB
Formato
Adobe PDF
|
49.01 MB | Adobe PDF |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/219986
URN:NBN:IT:POLIMI-219986