Photochromic materials are capable of undergoing reversible structural transformations in response to light, enabling precise spatiotemporal control of their physical and chemical properties. This characteristic makes them ideal tools for advanced applications, including photopharmacology, which exploits light to selectively and non-invasively modulate the activity of drugs and cellular processes. In this work, new photochromic compounds based on amphiphilic azobenzenes were developed and characterized; these are designed to spontaneously integrate into cell membranes and modulate membrane potential through photoisomerization. Following initial results obtained with the first molecule (Ziapin2), new generations of photoswitches were introduced to overcome limitations such as absorption near the UV range, poor solubility, and limited membrane retention. The adoption of push-pull structures and conjugation with biomolecules like cholesterol improved optical properties, solubility, and membrane stability. Finally, the methodology was extended to target cellular organelles, such as mitochondria. These results, achieved in collaboration with the Italian Institute of Technology, expand the understanding of structure-function relationships in photochromic materials and lay the groundwork for developing new light-activated therapeutic strategies.
I materiali fotochromici sono capaci di subire trasformazioni strutturali reversibili in risposta alla luce, e consentono un controllo spaziotemporale preciso delle loro proprietà fisiche e chimiche. Questa caratteristica li rende strumenti ideali per applicazioni avanzate, tra cui la fotofarmacologia, che sfrutta la luce per modulare in modo mirato e non invasivo l’attività di farmaci e processi cellulari. In questo lavoro sono stati sviluppati e caratterizzati nuovi composti fotocromici basati su azobenzeni anfifilici, progettati per integrarsi spontaneamente nelle membrane cellulari e modularne il potenziale tramite fotoisomerizzazione. Dopo i primi risultati ottenuti con la prima molecola (Ziapin2), sono state introdotte nuove generazioni di "fotoswitch" per superare limiti quali l’assorbimento vicino all’UV, la scarsa solubilità e la ridotta permanenza nella membrana. L’adozione di strutture push-pull e la coniugazione con biomolecole come il colesterolo hanno migliorato le proprietà ottiche, la solubilità e la stabilità membranale. Infine, la metodologia è stata estesa al targeting di organelli cellulari, come i mitocondri. Questi risultati, ottenuti in collaborazione con l’Istituto Italiano di Tecnologia, ampliano la comprensione dei rapporti struttura-funzione nei materiali fotochromici e gettano le basi per lo sviluppo di nuove strategie terapeutiche attivate dalla luce.
Novel light-driven nanoactuators and molecular switches for cell stimulation and related phototherapeutic technologies
VALENTINA, SESTI
2025
Abstract
Photochromic materials are capable of undergoing reversible structural transformations in response to light, enabling precise spatiotemporal control of their physical and chemical properties. This characteristic makes them ideal tools for advanced applications, including photopharmacology, which exploits light to selectively and non-invasively modulate the activity of drugs and cellular processes. In this work, new photochromic compounds based on amphiphilic azobenzenes were developed and characterized; these are designed to spontaneously integrate into cell membranes and modulate membrane potential through photoisomerization. Following initial results obtained with the first molecule (Ziapin2), new generations of photoswitches were introduced to overcome limitations such as absorption near the UV range, poor solubility, and limited membrane retention. The adoption of push-pull structures and conjugation with biomolecules like cholesterol improved optical properties, solubility, and membrane stability. Finally, the methodology was extended to target cellular organelles, such as mitochondria. These results, achieved in collaboration with the Italian Institute of Technology, expand the understanding of structure-function relationships in photochromic materials and lay the groundwork for developing new light-activated therapeutic strategies.File | Dimensione | Formato | |
---|---|---|---|
Binder1 1.pdf
accesso solo da BNCF e BNCR
Dimensione
28.74 MB
Formato
Adobe PDF
|
28.74 MB | Adobe PDF |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/220005
URN:NBN:IT:POLIMI-220005