This research programme, funded by STMicroelectronics, focuses on developing miniaturized thermoelectric generators through scalable manufacturing methods to convert waste heat into electricity, addressing the increasing demand driven by the growing microelectronics and Internet of Things markets. Within this context, the doctoral project aims to evaluate the feasibility of fabricating thermoelectric legs with lateral dimensions and thicknesses in the tens-of-micrometer range using industrially scalable technologies. As a preliminary step, a thorough literature review was performed to determine the best fitting materials and technologies for the aim. Bismuth telluride compounds were chosen as the performance is high close to room temperature; the p-type compound Bi0.5Sb1.5Te3 was then selected as matter of study. Ink-based deposition techniques were prioritized over sputtering, due to the technological limits of the latter in reaching the needed thicknesses. In the case, Aerosol Jet Printing was selected for its scalability, flexibility, and ability to deposit thick layers with high resolution. STMicroelectronics provided the All-in-One Materials Deposition Platform CERADROPCeraPrinterF-series, which was developed to fit supply chain of microelectronics thanks to its numerous functions and high-throughput production with interchangeable printing heads. Two approaches were used to fabricate Bi0.5Sb1.5Te3 powders for ink preparation: • High-energy ball milling produced large (≈ 4 µm) and irregular particles, suitable for scalable ink production but with limited ink stability and dispersible solid fraction. • Solution-processing yielded smaller (≈ 900 nm) and more uniform hexagonal nanoplates, enabling stable inks with 40 wt% solid fraction but with lower scalability. The material was then studied accordingly to the following key project goals: • Material Characterization: the powders fabricated by ball milling were consolidated via cold pressing and additive manufacturing (Binder Jetting), in the latter case to simulate thick film fabrication where pressure cannot be applied during the preparation of the pellets. The morphological, microstructural, and thermoelectric properties were analyzed to determine the effect of pressure during consolidation. • Ink Preparation: The inks were formulated and optimized for Aerosol Jet Printing using both the typologies of particles, prioritizing high solid fractions and long-term stability. • Thick Film Fabrication and Optimization: The thick films were deposited on Si/SiO2 substrates to align with the silicon supply chain. Further, the inks prepared with the grinded particles were printed employing a custom-made system, whereas the inks dispersed with the nanoplates were used on CERADROP F-series, to compare the quality of the films using the different inks. Post-processing included conventional furnace treatments and laser irradiation to improve density. The morphological, microstructural, and thermoelectric properties were characterized to determine the quality of the deposit and the effects of post-processing. Additionally, two feasibility tests were conducted using the CERADROP system to evaluate the highest attainable line resolution and demonstrate the ability of the system to meet the requirements of the research programme. The results revealed that ball-milled powders failed to provide sufficient density or stability, while solution-processed particles produced stable inks and adequate thickness. Between the different challenges that were faced as the films were post processed, extensive cracking remains the most critical. Interestingly, the attained resolution resulted 25 µm, which is virtually sufficient to achieve the research programme goal. This study demonstrates the feasibility of producing miniaturized thermoelectric legs through Aerosol Jet Printing using the industrially scalable platform CERADROP CeraPrinter F-series. It provides preliminary guidelines for process optimization, focusing on ink formulation, printing conditions, and post-processing techniques. The research highlights the potential of integrating dual printing heads to deposit p- and n-type inks simultaneously, enabling the direct fabrication of thermoelectric modules in a single process. The focus of future efforts must be the optimization of the technique to meet the stringent requirements of microelectronics manufacturing.
Questo programma di ricerca, finanziato da STMicroelectronics, è focalizzato sullo sviluppo di generatori termoelettrici miniaturizzati attraverso metodi di produzione industrializzabili, al fine di convertire il calore disperso in elettricità, rispondendo alla crescente domanda guidata dai mercati in espansione della microelettronica e "Internet of Things". In questo contesto, il progetto di dottorato mira a valutare la fattibilità della fabbricazione di gambe termoelettriche con spessori e dimensioni laterali nell’ordine delle decine di micrometri, utilizzando tecnologie scalabili. In via preliminare, la letteratura scientifica è stata revisionata in maniera approfondita per identificare i materiali e le tecnologie più adatti all’obiettivo. Il tellururo di bismuto è stato selezionato per via delle elevate prestazioni vicino a temperatura ambiente; il composto di tipo p Bi0.5Sb1.5Te3 è stato poi scelto come oggetto di studio. Le tecniche di deposizione a base di inchiostri sono state preferite al processo di sputtering, per via dei limiti tecnologici di quest’ultimo nel raggiungere lo spessore richiesto. Tra queste, la tecnica nominata Aerosol Jet Printing è stata selezionata per la sua scalabilità, flessibilità e capacità di depositare strati spessi mantenendo alta risoluzione. STMicroelectronics ha fornito la piattaforma di deposizione "All in-One" CERADROP CeraPrinter F-series di MGI, sviluppata per adattarsi alla filiera della microelettronica grazie alle sue numerose funzionalità, all’alta capacità produttiva e alle teste di stampa intercambiabili. Sono stati adottati due approcci per fabbricare le polveri di Bi0.5Sb1.5Te3 destinate alla preparazione degli inchiostri: • Macinazione ad alta energia. Le particelle fabbricate in questo modo si presentano come grandi (≈ 4 µm) e irregolari, adatte per una produzione scalabile degli inchiostri ma con stabilità e frazione solida limitata. • Sintesi chimica. Usando questo metodo sono state prodotte delle "nanoplates" esagonali uniformi e di dimensione sub-micrometrica (≈ 900 nm), consentendo la preparazione di inchiostri stabili con una frazione solida fino al 40% in peso, ma presentando inferiore scalabilità. Il materiale è stato quindi studiato in relazione ai seguenti obiettivi chiave del progetto: • Caratterizzazione del materiale: le polveri ottenute tramite macinazione sono state consolidate mediante pressatura a freddo e manifattura additiva (Binder Jetting), quest’ultima utilizzata per simulare la fabbricazione di film spessi dove non è possibile applicare pressione durante la preparazione dei pellet. Le proprietà morfologiche, microstrutturali e termoelettriche sono state analizzate per valutare l’effetto della pressione durante la consolidazione. • Preparazione degli inchiostri: gli inchiostri sono stati formulati e ottimizzati per la stampa Aerosol Jet utilizzando entrambi i tipi di particelle, conferendo la priorità all’ottenimento di una frazione solida elevata e stabilità a lungo termine. • Fabbricazione e ottimizzazione di film spessi: i film spessi sono stati depositati su substrati Si/SiO2 per lavorare in condizioni simili a quella della filiera della microelettronica. Gli inchiostri preparati con le particelle macinate sono stati stampati utilizzando un sistema "custom-made", mentre quelli dispersi con le "nanoplates" sono stati stampati sulla piattaforma CERADROP F-series, per confrontare la qualità dei film ottenuti. I post-trattamenti hanno incluso l’uso di forni in maniera convenzionale e irraggiamento laser per migliorare la densità. Le proprietà morfologiche, microstrutturali e termoelettriche sono state caratterizzate per determinare la qualità dei depositi e l’effetto dei trattamenti post-deposizione. Inoltre, sono stati condotti due test di fattibilità con il sistema CERADROP per valutare la massima risoluzione ottenibile e dimostrare la capacità del sistema di soddisfare i requisiti del programma di ricerca. I risultati mostrano che le polveri ottenute tramite macinazione non garantiscono sufficiente stabilità e densità del deposito, mentre le particelle ottenute con il processo in soluzione hanno prodotto inchiostri stabili e spessori adeguati. Tra le diverse sfide affrontate durante i post-trattamenti, il problema più critico è stato la formazione estesa di cricche. Invece, la massima risoluzione ottenuta è di 25 µm, che risulta virtualmente sufficiente per raggiungere gli obiettivi del programma di ricerca. Questo studio dimostra la fattibilità della fabbricazione di gambe termoelettriche miniaturizzate tramite Aerosol Jet Printing utilizzando la piattaforma CERADROP CeraPrinter F-series, che è una macchina industrialmente scalabile. Questa dissertazione fornisce delle linee guida preliminari per l’ottimizzazione del processo, concentrandosi sulla formulazione degli inchiostri, le condizioni di stampa e le tecniche di post-processing. I risultati mostrano il potenziale di integrare molteplici testine di stampa per depositare simultaneamente inchiostri di tipo p e n, consentendo la fabbricazione diretta di moduli termoelettrici in un processo unico. Gli sforzi futuri dovranno essere focalizzati sull’ottimizzazione della tecnica per soddisfare i rigidi requisiti della produzione microelettronica.
Aerosol jet printing of bismuth telluride: study on different scales
MATTEO, d'ANGELO
2025
Abstract
This research programme, funded by STMicroelectronics, focuses on developing miniaturized thermoelectric generators through scalable manufacturing methods to convert waste heat into electricity, addressing the increasing demand driven by the growing microelectronics and Internet of Things markets. Within this context, the doctoral project aims to evaluate the feasibility of fabricating thermoelectric legs with lateral dimensions and thicknesses in the tens-of-micrometer range using industrially scalable technologies. As a preliminary step, a thorough literature review was performed to determine the best fitting materials and technologies for the aim. Bismuth telluride compounds were chosen as the performance is high close to room temperature; the p-type compound Bi0.5Sb1.5Te3 was then selected as matter of study. Ink-based deposition techniques were prioritized over sputtering, due to the technological limits of the latter in reaching the needed thicknesses. In the case, Aerosol Jet Printing was selected for its scalability, flexibility, and ability to deposit thick layers with high resolution. STMicroelectronics provided the All-in-One Materials Deposition Platform CERADROPCeraPrinterF-series, which was developed to fit supply chain of microelectronics thanks to its numerous functions and high-throughput production with interchangeable printing heads. Two approaches were used to fabricate Bi0.5Sb1.5Te3 powders for ink preparation: • High-energy ball milling produced large (≈ 4 µm) and irregular particles, suitable for scalable ink production but with limited ink stability and dispersible solid fraction. • Solution-processing yielded smaller (≈ 900 nm) and more uniform hexagonal nanoplates, enabling stable inks with 40 wt% solid fraction but with lower scalability. The material was then studied accordingly to the following key project goals: • Material Characterization: the powders fabricated by ball milling were consolidated via cold pressing and additive manufacturing (Binder Jetting), in the latter case to simulate thick film fabrication where pressure cannot be applied during the preparation of the pellets. The morphological, microstructural, and thermoelectric properties were analyzed to determine the effect of pressure during consolidation. • Ink Preparation: The inks were formulated and optimized for Aerosol Jet Printing using both the typologies of particles, prioritizing high solid fractions and long-term stability. • Thick Film Fabrication and Optimization: The thick films were deposited on Si/SiO2 substrates to align with the silicon supply chain. Further, the inks prepared with the grinded particles were printed employing a custom-made system, whereas the inks dispersed with the nanoplates were used on CERADROP F-series, to compare the quality of the films using the different inks. Post-processing included conventional furnace treatments and laser irradiation to improve density. The morphological, microstructural, and thermoelectric properties were characterized to determine the quality of the deposit and the effects of post-processing. Additionally, two feasibility tests were conducted using the CERADROP system to evaluate the highest attainable line resolution and demonstrate the ability of the system to meet the requirements of the research programme. The results revealed that ball-milled powders failed to provide sufficient density or stability, while solution-processed particles produced stable inks and adequate thickness. Between the different challenges that were faced as the films were post processed, extensive cracking remains the most critical. Interestingly, the attained resolution resulted 25 µm, which is virtually sufficient to achieve the research programme goal. This study demonstrates the feasibility of producing miniaturized thermoelectric legs through Aerosol Jet Printing using the industrially scalable platform CERADROP CeraPrinter F-series. It provides preliminary guidelines for process optimization, focusing on ink formulation, printing conditions, and post-processing techniques. The research highlights the potential of integrating dual printing heads to deposit p- and n-type inks simultaneously, enabling the direct fabrication of thermoelectric modules in a single process. The focus of future efforts must be the optimization of the technique to meet the stringent requirements of microelectronics manufacturing.File | Dimensione | Formato | |
---|---|---|---|
Matteo_dAngelo_PhDThesis.pdf
accesso solo da BNCF e BNCR
Dimensione
82.87 MB
Formato
Adobe PDF
|
82.87 MB | Adobe PDF |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/220069
URN:NBN:IT:POLIMI-220069