The growing emphasis on sustainable development has led to a paradigm shift in the treatment of different waste streams, moving from traditional removal and disposal practices towards more circular approaches focused on the recovery and reuse of water, energy, and valuable materials. In this context, purple phototrophic bacteria (PPB) represent a promising microbial platform for developing circular and sustainable biotechnological solutions, due to their ability to grow photoheterotrophically under anaerobic conditions. By utilizing light as an energy source, PPB efficiently assimilate carbon and essential nutrients, with high biomass yields. This high efficiency facilitates the effective recovery of resources, which can be further valorized into various value-added products, such as single-cell proteins (SCP), biofertilizers, and bioplastics. The potential of PPB-based biotechnologies for integrated resource recovery makes them a promising candidate in the development of sustainable biorefinery systems. Despite this potential, further research is still needed to advance towards full-scale application. This work investigates the potential of PPB mixed cultures from fundamental studies such as the characterization of optical behavior and the integration of radiation transfer into growth biokinetic models, to resource recovery of value-added production, with a focus on SCP from agri-food by-products. To this end, the first part of the work was addressed to adopt a broader perspective by reviewing the literature to assess the promising potential role of PPB-based biotechnologies in achieving several United Nations sustainable development goals (SDGs). A dedicated bibliometric analysis based on the co-occurrence of authors’ keywords was conducted to explore the connection between current research and the potential of PPB for achieving various SDGs. It has been shown that PPB-based biotechnologies contribute to a broad range of SDGs, including no poverty (SDG 1), zero hunger (SDG 2), good health and well-being (SDG 3), clean water and sanitation (SDG 6), affordable and clean energy (SDG 7), responsible consumption and production (SDG 12), climate action (SDG 13), life below water (SDG 14), and life on land (SDG 15). The review discussed critical barriers and lack of knowledge, such as understanding optical behavior and radiation transfer, optimizing photobioreactor (PBR) design and operation, commercialization, and proposes pathways for advancing PPB adoption through policy support and techno-economic optimization. Based on the research gaps, experimental and modelling approaches were then combined to characterize the optical behavior of PPB mixed cultures to understand the fundamentals related to radiation characteristics. Absorbance and scattering behavior were analyzed across the 300 – 1100 nm range under varying biomass concentrations and incident light intensities (10 – 60 W·m−2). Moreover, radiation transfer using Beer-Lambert law, two-flux approximation, and computational fluid dynamics (CFD) simulations assessed light distribution within the PBR. Although scattering effects were found to be non-negligible and highly anisotropic, the Beer-Lambert law could effectively describe light attenuation profiles, with significantly lower computational demands. These findings support the use of simplified models for reactor-scale design and operation. Furthermore, light penetration illuminated from one side was limited to less than 4 cm, highlighting the advantage of flat-plate PBR configurations with two-sided illumination for improved light penetration in deeper PBRs. Based on these results, through batch and continuous PBR experiments using acetate as the substrate, the effects of light intensity on PPB growth kinetics were assessed and incorporated into an extended Monod-type model. Light attenuation, based on the effectiveness of the Beer-Lambert law, was incorporated using the experimentally measured mass extinction coefficients. The developed biokinetic model was validated in a continuous-flow flat-plate PBR, confirming its predictive capability for both biomass growth and substrate removal. This resulted in an acetate uptake rate of 3.82 mgCOD∙mgCOD−1∙d−1 and half saturation coefficient of 3.16 W∙m–2. Microbial analysis showed that light intensity played a key role in shaping the bacterial community, with PPB abundance exceeding higher than 75% for all the samples. Rhodopseudomonas sp. dominated under 10 W∙m–2, whereas Rhodobacter sp. became more prevalent at increased light levels, especially at 40 W∙m–2. Moreover, a model-based scenario analysis emphasized the critical role of PBR thickness and hydraulic retention time, representing a step towards technological upscaling. After understanding the fundamentals of PPB mixed cultures, the valorization of deproteinated cheese whey (DCW), a widely available agri-food by-product, was investigated as a carbon source for SCP production for novel feed ingredients. A two-stage process was developed, combining acidogenic fermentation in anaerobic sequencing batch reactors (AnSBRs) of 1 and 9 L with subsequent PPB cultivation under incident light intensity of 40 W·m−2. Fermentation of DCW yielded volatile fatty acids (VFAs) reaching high degrees of acidification (> 85%) for both AnSBRs, which were assimilated by PPB in batch tests. The microbial community cultivated on fermented DCW from the 9-L AnSBR and on acetate was dominated by PPB, accounting for 91% of the total population. The VFA mixture obtained from the 9-L AnSBR showed a promising substrate for the growth of PPB mixed cultures leading to a PPB biomass yield of 0.91, SCP content up to 64% (g·gTSS−1), and production of amino acids. Digestibility analyses indicated higher nutritional value of PPB-derived SCP compared to soybean meal (85% vs. 67%), highlighting its potential as an alternative feed protein. This integrated bioprocess paves the way for a feasible, cost-effective, and sustainable approach to resource recovery from dairy industry waste. Finally, the valorization route for the conversion of DWC by PPB mixed cultures was demonstrated at the lab-scale via a process operated in continuous mode, encompassing AF (in 9-L AnSBR), fermentate filtration (on cross-flow ultrafiltration membrane), PPB mixed culture growth on VFA mixture (in 10-L flat-plate PBR) and microbial biomass harvesting. Moreover, economic assessment, in line with the proposed lab-scale prototype, was estimated using data from published literature and supplemented by information obtained through communication with industry stakeholders. Four economic scenarios were considered, including PPB mixed cultures grown in flat-plate PBRs and raceway ponds with sunlight as the energy source and microbial biomass harvested via centrifuge combined with freeze drying and membrane filtration combined with spray drying. The lab-scale results showed VFA-rich fermentate effectively supported PPB growth, resulting in SCP content of up to 55% (g·gTSS−1), thus demonstrating the feasibility of protein production via an integrated continuous process. Regarding the growth of PPB mixed culture, raceway ponds demonstrated the best economic performance, with a total biomass production cost of 5 €∙kg–1. However, although this cost is relatively high, it reflects a first-of-a-kind assessment based on early-stage data and assumptions. This dissertation provides both theoretical and experimental contributions to the field of environmental biotechnology, supporting the development of PPB-based systems from fundamental understanding to practical applications. By integrating reactor design, microbial behavior, and circular bioeconomy approaches, the work establishes a robust foundation for future innovations in sustainable bioprocess development.
La crescente enfasi verso le tematiche di sviluppo sostenibile ha portato a un cambiamento di paradigma nel trattamento dei flussi di rifiuti, passando dalle pratiche tradizionali di rimozione e smaltimento verso approcci più circolari focalizzati sul recupero e il riutilizzo di acqua, energia e materiali. In questo contesto, i batteri fototrofici purpurei (Purple Phototrophic Bacteria, PPB) rappresentano una piattaforma microbica promettente per sviluppare soluzioni biotecnologiche circolari e sostenibili, grazie alla loro capacità di crescere in condizioni anaerobiche mediante metabolismo fotoeterotrofo. Infatti, utilizzando la luce come fonte di energia, i PPB assimilano in modo efficiente carbonio organico e nutrienti essenziali, con elevate rese di biomassa. Questa elevata efficienza facilita il recupero efficace delle risorse, che possono essere successivamente valorizzate in vari prodotti ad elevato valore aggiunto, come proteine microbiche (Single Cell Protein, SCP), biofertilizzanti e bioplastiche. Il potenziale delle biotecnologie basate su PPB per il recupero integrato delle risorse le rende candidate promettenti su cui basare lo sviluppo di bioraffinerie sostenibili. Nonostante questo potenziale, sono ancora necessarie ulteriori ricerche per avanzare verso l'applicazione su scala reale. Questo lavoro indaga il potenziale delle colture miste di PPB, a partire dallo studio di aspetti fondamentali come la caratterizzazione del comportamento ottico e l’integrazione del trasferimento radiativo nei modelli cinetici di crescita, ad aspetti applicativi relativi al recupero di risorse in forma di prodotti ad elevato valore aggiunto, con un focus su SCP da sottoprodotti agroalimentari. A tal fine, la prima parte del lavoro è stata dedicata all’adozione di una prospettiva più ampia, attraverso una revisione della letteratura per valutare il potenziale ruolo delle biotecnologie basate su PPB nel raggiungimento di diversi obiettivi di sviluppo sostenibile (SDG) delle Nazioni Unite. È stata condotta un'analisi bibliometrica dedicata, basata sulla co-occorrenza delle parole chiave degli autori, per esplorare la connessione tra la ricerca attuale e il potenziale dei PPB nel raggiungimento dei vari SDG. È emerso che le biotecnologie basate su PPB contribuiscono a un'ampia gamma di SDG, tra cui sconfiggere la povertà (SDG 1), sconfiggere la fame (SDG 2), salute e benessere (SDG 3), acqua pulita e igiene (SDG 6), energia pulita e accessibile (SDG 7), consumo e produzione responsabili (SDG 12), lotta contro il cambiamento climatico (SDG 13), vita sott'acqua (SDG 14) e vita sulla terra (SDG 15). La revisione ha discusso le principali barriere e le lacune di conoscenza, come la comprensione del comportamento ottico e del trasferimento radiativo, l’ottimizzazione della progettazione e gestione dei fotobioreattori (PBR), la commercializzazione, e ha proposto percorsi per favorire l’adozione dei PPB tramite supporto normativo e ottimizzazione tecnico-economica. Sulla base di tali lacune, sono stati quindi combinati approcci sperimentali e di modellazione per caratterizzare il comportamento ottico delle colture miste di PPB, al fine di comprendere i fondamenti relativi alle caratteristiche radiative. Il comportamento delle matrici in termini di assorbanza e scattering è stato analizzato nell’intervallo 300–1100 nm a diverse concentrazioni di biomassa e intensità luminose incidenti (10–60 W·m−2). Inoltre, il trasferimento radiativo è stato valutato utilizzando la legge di Beer-Lambert, l’approssimazione a due flussi e simulazioni di fluidodinamica computazionale (CFD) per analizzare la distribuzione della luce all’interno del PBR. Sebbene gli effetti di scattering siano risultati non trascurabili e altamente anisotropi, la legge di Beer-Lambert ha descritto efficacemente i profili di attenuazione luminosa, con requisiti computazionali significativamente inferiori. Questi risultati supportano l’uso di modelli semplificati per la progettazione e gestione dei reattori su scala reale. Inoltre, la penetrazione della luce con illuminazione unilaterale è risultata limitata a meno di 4 cm, evidenziando il vantaggio delle configurazioni di PBR a pannello piatto con illuminazione bilaterale per migliorare la penetrazione luminosa in PBR più profondi. Sulla base di questi risultati, attraverso esperimenti in batch e in continuo in PBR utilizzando acetato come substrato, sono stati valutati gli effetti dell’intensità luminosa sulla cinetica di crescita dei PPB e integrati in un modello esteso di tipo Monod. L’attenuazione luminosa, basata sull’efficacia della legge di Beer-Lambert, è stata incorporata utilizzando i coefficienti di estinzione massica misurati sperimentalmente. Il modello cinetico sviluppato è stato validato in un PBR a pannello piano operato in continuo, confermandone la capacità predittiva sia per la crescita della biomassa che per la rimozione del substrato. Ne è risultato un tasso di consumo di acetato pari a 3,82 mgCOD∙mgCOD−1∙d−1 e un coefficiente di saturazione pari a 3,16 W∙m–2. L’analisi microbica ha mostrato che l’intensità luminosa ha giocato un ruolo chiave nel modellare la comunità batterica, con abbondanza di PPB superiore al 75% in tutti i campioni. Rhodopseudomonas sp. ha dominato a 10 W∙m–2, mentre Rhodobacter sp. è risultato prevalente a intensità luminose più elevate, in particolare a 40 W∙m–2. Inoltre, un’analisi di scenario basata sul modello ha evidenziato il ruolo critico dello spessore del PBR e del tempo di ritenzione idraulico, rappresentando un passo verso la scalabilità tecnologica. Dopo aver compreso i fondamenti delle colture miste di PPB, è stata investigata la valorizzazione del siero di latte deproteinizzato (DCW), un sottoprodotto agroalimentare ampiamente disponibile, come fonte di carbonio per la produzione di SCP da utilizzare per ingredienti proteici innovativi. È stato sviluppato un processo in due fasi, combinando la fermentazione acidogenica in reattori sequenziali anaerobici (AnSBR) da 1 e 9 L con la successiva coltivazione di PPB con un’intensità luminosa di 40 W·m−2. La fermentazione del DCW ha prodotto acidi grassi volatili (VFA) con alti gradi di acidificazione (>85%) in entrambi gli AnSBR, successivamente assimilati dai PPB nei test in batch. La comunità microbica coltivata sul DCW fermentato dall’AnSBR da 9 L e su acetato è risultata dominata dai PPB, che rappresentavano il 91% della popolazione totale. La miscela di VFA ottenuta ha dimostrato di essere un substrato promettente per la crescita di colture miste di PPB, portando a una resa di biomassa PPB pari a 0,91, un contenuto in SCP fino al 64% (g·gTSS−1) e la produzione di aminoacidi. Le analisi di digeribilità hanno indicato un valore nutrizionale più elevato delle SCP derivate da PPB rispetto alla farina di soia (85% vs. 67%), evidenziando il loro potenziale come proteina alternativa per mangimi. Questo processo biotecnologico integrato apre la strada a un approccio economicamente conveniente e sostenibile per il recupero di risorse dai rifiuti dell’industria lattiero-casearia. Infine, il percorso di valorizzazione del DCW tramite colture miste di PPB è stato dimostrato a scala di laboratorio tramite un processo operato in continuo, comprendente fermentazione acidogenica (in AnSBR da 9 L), filtrazione del fermentato (tramite membrana di ultrafiltrazione a flusso incrociato), crescita delle colture miste di PPB sulla miscela di VFA (in PBR a pannello piano da 10 L) e raccolta della biomassa microbica. Inoltre, è stata effettuata una valutazione economica, in linea con il prototipo su scala di laboratorio, stimata utilizzando dati dalla letteratura e integrata con informazioni ottenute tramite interlocuzioni con operatori industriali. Sono stati considerati quattro scenari economici, inclusi PPB coltivati in PBR a pannello piano e in bacini aperti (raceway ponds) utilizzando luce solare come fonte energetica, e raccolta della biomassa tramite centrifugazione combinata con liofilizzazione o filtrazione a membrana combinata con essiccamento a spray. I risultati di laboratorio hanno mostrato che il fermentato ricco in VFA ha supportato efficacemente la crescita dei PPB, portando a un contenuto in SCP fino al 55% (g·gTSS−1), dimostrando così la fattibilità della produzione proteica tramite un processo integrato e continuo. Per quanto riguarda la crescita delle colture miste di PPB, i raceway ponds hanno dimostrato le migliori prestazioni economiche, con un costo totale di produzione della biomassa pari a 5 €∙kg–1. Tuttavia, sebbene questo costo sia relativamente elevato, riflette una valutazione pionieristica basata su dati e assunzioni preliminari. Questa tesi fornisce contributi sia teorici che sperimentali nel campo delle biotecnologie ambientali, supportando lo sviluppo di sistemi basati su PPB dalla comprensione degli aspetti fondamentale fino alle applicazioni pratiche. Integrando la progettazione dei reattori, il comportamento microbico e gli approcci di bioeconomia circolare, il lavoro stabilisce una solida base per future innovazioni nello sviluppo di processi biotecnologici sostenibili.
Resource recovery from wastewater via purple phototrophic bacteria: from fundamentals to process scale-up
Ali, Amini
2025
Abstract
The growing emphasis on sustainable development has led to a paradigm shift in the treatment of different waste streams, moving from traditional removal and disposal practices towards more circular approaches focused on the recovery and reuse of water, energy, and valuable materials. In this context, purple phototrophic bacteria (PPB) represent a promising microbial platform for developing circular and sustainable biotechnological solutions, due to their ability to grow photoheterotrophically under anaerobic conditions. By utilizing light as an energy source, PPB efficiently assimilate carbon and essential nutrients, with high biomass yields. This high efficiency facilitates the effective recovery of resources, which can be further valorized into various value-added products, such as single-cell proteins (SCP), biofertilizers, and bioplastics. The potential of PPB-based biotechnologies for integrated resource recovery makes them a promising candidate in the development of sustainable biorefinery systems. Despite this potential, further research is still needed to advance towards full-scale application. This work investigates the potential of PPB mixed cultures from fundamental studies such as the characterization of optical behavior and the integration of radiation transfer into growth biokinetic models, to resource recovery of value-added production, with a focus on SCP from agri-food by-products. To this end, the first part of the work was addressed to adopt a broader perspective by reviewing the literature to assess the promising potential role of PPB-based biotechnologies in achieving several United Nations sustainable development goals (SDGs). A dedicated bibliometric analysis based on the co-occurrence of authors’ keywords was conducted to explore the connection between current research and the potential of PPB for achieving various SDGs. It has been shown that PPB-based biotechnologies contribute to a broad range of SDGs, including no poverty (SDG 1), zero hunger (SDG 2), good health and well-being (SDG 3), clean water and sanitation (SDG 6), affordable and clean energy (SDG 7), responsible consumption and production (SDG 12), climate action (SDG 13), life below water (SDG 14), and life on land (SDG 15). The review discussed critical barriers and lack of knowledge, such as understanding optical behavior and radiation transfer, optimizing photobioreactor (PBR) design and operation, commercialization, and proposes pathways for advancing PPB adoption through policy support and techno-economic optimization. Based on the research gaps, experimental and modelling approaches were then combined to characterize the optical behavior of PPB mixed cultures to understand the fundamentals related to radiation characteristics. Absorbance and scattering behavior were analyzed across the 300 – 1100 nm range under varying biomass concentrations and incident light intensities (10 – 60 W·m−2). Moreover, radiation transfer using Beer-Lambert law, two-flux approximation, and computational fluid dynamics (CFD) simulations assessed light distribution within the PBR. Although scattering effects were found to be non-negligible and highly anisotropic, the Beer-Lambert law could effectively describe light attenuation profiles, with significantly lower computational demands. These findings support the use of simplified models for reactor-scale design and operation. Furthermore, light penetration illuminated from one side was limited to less than 4 cm, highlighting the advantage of flat-plate PBR configurations with two-sided illumination for improved light penetration in deeper PBRs. Based on these results, through batch and continuous PBR experiments using acetate as the substrate, the effects of light intensity on PPB growth kinetics were assessed and incorporated into an extended Monod-type model. Light attenuation, based on the effectiveness of the Beer-Lambert law, was incorporated using the experimentally measured mass extinction coefficients. The developed biokinetic model was validated in a continuous-flow flat-plate PBR, confirming its predictive capability for both biomass growth and substrate removal. This resulted in an acetate uptake rate of 3.82 mgCOD∙mgCOD−1∙d−1 and half saturation coefficient of 3.16 W∙m–2. Microbial analysis showed that light intensity played a key role in shaping the bacterial community, with PPB abundance exceeding higher than 75% for all the samples. Rhodopseudomonas sp. dominated under 10 W∙m–2, whereas Rhodobacter sp. became more prevalent at increased light levels, especially at 40 W∙m–2. Moreover, a model-based scenario analysis emphasized the critical role of PBR thickness and hydraulic retention time, representing a step towards technological upscaling. After understanding the fundamentals of PPB mixed cultures, the valorization of deproteinated cheese whey (DCW), a widely available agri-food by-product, was investigated as a carbon source for SCP production for novel feed ingredients. A two-stage process was developed, combining acidogenic fermentation in anaerobic sequencing batch reactors (AnSBRs) of 1 and 9 L with subsequent PPB cultivation under incident light intensity of 40 W·m−2. Fermentation of DCW yielded volatile fatty acids (VFAs) reaching high degrees of acidification (> 85%) for both AnSBRs, which were assimilated by PPB in batch tests. The microbial community cultivated on fermented DCW from the 9-L AnSBR and on acetate was dominated by PPB, accounting for 91% of the total population. The VFA mixture obtained from the 9-L AnSBR showed a promising substrate for the growth of PPB mixed cultures leading to a PPB biomass yield of 0.91, SCP content up to 64% (g·gTSS−1), and production of amino acids. Digestibility analyses indicated higher nutritional value of PPB-derived SCP compared to soybean meal (85% vs. 67%), highlighting its potential as an alternative feed protein. This integrated bioprocess paves the way for a feasible, cost-effective, and sustainable approach to resource recovery from dairy industry waste. Finally, the valorization route for the conversion of DWC by PPB mixed cultures was demonstrated at the lab-scale via a process operated in continuous mode, encompassing AF (in 9-L AnSBR), fermentate filtration (on cross-flow ultrafiltration membrane), PPB mixed culture growth on VFA mixture (in 10-L flat-plate PBR) and microbial biomass harvesting. Moreover, economic assessment, in line with the proposed lab-scale prototype, was estimated using data from published literature and supplemented by information obtained through communication with industry stakeholders. Four economic scenarios were considered, including PPB mixed cultures grown in flat-plate PBRs and raceway ponds with sunlight as the energy source and microbial biomass harvested via centrifuge combined with freeze drying and membrane filtration combined with spray drying. The lab-scale results showed VFA-rich fermentate effectively supported PPB growth, resulting in SCP content of up to 55% (g·gTSS−1), thus demonstrating the feasibility of protein production via an integrated continuous process. Regarding the growth of PPB mixed culture, raceway ponds demonstrated the best economic performance, with a total biomass production cost of 5 €∙kg–1. However, although this cost is relatively high, it reflects a first-of-a-kind assessment based on early-stage data and assumptions. This dissertation provides both theoretical and experimental contributions to the field of environmental biotechnology, supporting the development of PPB-based systems from fundamental understanding to practical applications. By integrating reactor design, microbial behavior, and circular bioeconomy approaches, the work establishes a robust foundation for future innovations in sustainable bioprocess development.File | Dimensione | Formato | |
---|---|---|---|
PhD Dissertation - Ali Amini.pdf
embargo fino al 12/06/2028
Dimensione
5.82 MB
Formato
Adobe PDF
|
5.82 MB | Adobe PDF |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/220183
URN:NBN:IT:POLIMI-220183