The relentless pursuit of high-performance sustainable energy storage solutions has fueled a surge in research dedicated to the exploration and optimization of negative electrode materials for lithium-ion batteries (LIBs). LIBs are currently the leading technology for energy storage systems, playing a pivotal role in the global transition toward a green and sustainable economy. However, commercial LIBs are approaching their theoretical performance limits, driving a growing interest in exploring new electrode materials. Germanium has garnered significant attention as a potential replacement for graphite, the standard negative electrode material for LIBs. Its high theoretical capacity of 1624 mAh/g and promising electrochemical properties make it suitable for fast charge and discharge applications while contributing to excellent cell stability. However, there are some challenges limiting its usage, primarily the substantial volumetric ex- pansion during lithiation, which leads to the pulverization of the bulk material. A viable approach to address this issue involves nanostructuring the material to accommodate lithium ions without degrading the host structure. This work presents the fabrication process to develop efficient, reliable and binder-free porous Germanium thin film electrodes with high capacity and superior rate capability. Initially, a thin film of Germanium is deposited via a Plasma Enhanced Chemical Vapor Deposition (PECVD) on top of a metallic substrate. The film is subsequently nanostructured using electrochemical etching in hydrofluoric acid. The fabrication process, along with a comprehensive review of morphological, structural and compositional analysis is presented and complemented by theoretical models. The morphological characterization has been conducted using different microscopy techniques which allowed the identification of the porous structure, crucial to accommodate the ∼ 300% volumetric expansion of Ge during lithiation and delithiation. Structural analysis has been performed using diffraction techniques and X-ray Ab- sorption Spectroscopy (XAS). In-situ XAS measurements at synchrotron facilities (Brookhaven National Laboratories and European Synchrotron Facility) provided in- sight into the reversible changes in Ge atomic structure during cycling. A detailed investigation of the Solid Electrolyte Interface (SEI), a passivating layer forming at the electrode-electrolyte interface, has been conducted. During my research stay at the Denmark Technical University (DTU), efforts were focused on modeling the Ge-electrolyte interface using the Atomic Simulation Environment (ASE). These simulations allowed to study the relaxation of Ge surfaces during lithiation, identifying the most stable structures. Complementing these simulations, experimental measurements across multiple cycling stages have been carried out. Physical and electrochemical characterization of the electrodes are presented in dedicated chapters, together with the preliminary results obtained with atomic simulations. Electrochemical tests demonstrate that the fabricated electrodes deliver outstanding performance across various operating conditions, reaching up to 1250 mAh/g at 1C rate (four times higher than graphite electrodes, which reach only 374 mAh/g at the same C-rate). Furthermore, these electrodes are able to sustain extremely high currents, holding a capacity at 60C comparable to that of graphite at 1C. The nanostructured Germanium electrodes, here described, are particularly suited for aerospace application, where materials must meet stringent reliability standards. The porous structure not only enhances the electrochemical performance but also contributes to improved mechanical stability, making them ideal for high-stress environments such as those encountered in space missions. This is why this research is conducted under the ”GLITTERY” project, entirely founded by the Italian Space Agency.
La continua ricerca di soluzioni sostenibili e ad alte prestazioni per l’accumulo di energia, ha alimentato un’intesa attività di ricerca dedicata all’esplorazione e all’ottimizzazione dei materiali per elettrodi negativi nella batterie agli ioni di litio (LIBs). Le LIBs rappresentano attualmente la tecnologia leader nei sistemi di accumulo, svolgendo un ruolo fondamentale nella transazione globale verso un’economia verde e sostenibile. Tuttavia, stanno raggiungendo i loro limiti teorici di prestazione, stimolando un crescente interesse verso nuovi materiali per elettrodi. Il Germanio ha attirato una notevole attenzione come possibile sostituto della grafite, l’attuale materiale standard per l’elettrodo negativo. La sua elevata capacità teorica di 1624 mAh/g e le promettenti proprietà elettrochimiche, lo rendono adatto per applicazioni di carica e scarica rapide, garantendo al contempo un’eccellente stabilità della cella. Tuttavia esistono delle sfide che ne limitano l’utilizzo. Principalmente l’espansione volumetrica significativa durante il processo di litiazione, che porta alla polverizzazione del materiale attivo. Un approccio efficace per affrontare questo problema consiste nel nano-strutturare il materiale, consentendo l’inserimento reversibile degli ioni di litio senza degradare la struttura ospite. In questo lavoro viene riportato il processo di fabbricazione di elettrodi sottili di germanio poroso con elevata capacità e prestazioni superiori in termini di velocità di carica e scarica. Un sottile film di germanio viene depositato su un substrato metallico mediante deposizione chimica da vapore assistita da plasma (PECVD) e successivamente, il film viene nanostrutturato attraverso un attacco elettrochimico in acido fluoridrico. La caratterizzazione morfologica è stata effettuata utilizzando diverse tecniche di microscopia, che hanno permesso di identificare la struttura porosa, cruciale per accogliere l’espansione volumetrica del ∼ 300% del germanio durante i processi di litiazione e delitiazione. L’analisi strutturale è stata condotta tramite tecniche di diffrazione e spettroscopia di assorbimento ai raggi X (XAS). Misure in-situ, effettuate presso il sincrotrone ai Laboratori Nazionali di Brookhaven e presso l’European Synchrotron Facility, hanno fornito informazioni sui cambiamenti reversibili nella struttura atomica del germanio durante il ciclo elettrochimico. Inoltre, è stata condotta un’analisi dettagliata dell’interfaccia tra l’elettrodo e l’elettrolita (SEI). Durante il mio periodo di ricerca presso la Technical University of Denmark (DTU), ho condotto uno studio sulla modellazione dell’interfaccia Ge- elettrolita utilizzando l’ambiente di simulazione atomica (ASE). Queste simulazioni hanno permesso di studiare il rilassamento delle superfici di germanio, identificando le strutture più stabili. A completamento delle simulazioni, sono state effettuate misure sperimentali in diverse fasi del ciclo elettrochimico. La caratterizzazione fisica ed elettrochimica degli elettrodi è presentata in capitoli dedicati, insieme ai risultati preliminari ottenuti dalle simulazioni atomiche. dai test elettrochimici si evince che gli elettrodi in germanio poroso offrono prestazioni eccellenti in diverse condizioni operative, raggiungendo capacità fino a 1250 mAh/g a correnti di 1C (quattro volte superiore agli elettrodi di grafite, che arrivano solo a 374 mAh/g allo stesso C-rate). Inoltre, questi elettrodi sono in grado di sostenere correnti estremamente elevate, mantenendo una capacità a 60C paragonabile a quella della grafite a 1C. Gli elettrodi di germanio nanostrutturato sono particolarmente adatti per applicazioni aerospaziali, dove i materiali devono soddisfare rigorosi standard di affidabilità. Per questo motivo, questa ricerca è condotta nell’ambito del progetto ”GLITTERY”, interamente finanziato dall’Agenzia Spaziale Italiana.
Design, Morphological and Structural Studies of Nanostructured Germanium electrodes for Lithium-ion Batteries
DIOLAITI, VALENTINA
2025
Abstract
The relentless pursuit of high-performance sustainable energy storage solutions has fueled a surge in research dedicated to the exploration and optimization of negative electrode materials for lithium-ion batteries (LIBs). LIBs are currently the leading technology for energy storage systems, playing a pivotal role in the global transition toward a green and sustainable economy. However, commercial LIBs are approaching their theoretical performance limits, driving a growing interest in exploring new electrode materials. Germanium has garnered significant attention as a potential replacement for graphite, the standard negative electrode material for LIBs. Its high theoretical capacity of 1624 mAh/g and promising electrochemical properties make it suitable for fast charge and discharge applications while contributing to excellent cell stability. However, there are some challenges limiting its usage, primarily the substantial volumetric ex- pansion during lithiation, which leads to the pulverization of the bulk material. A viable approach to address this issue involves nanostructuring the material to accommodate lithium ions without degrading the host structure. This work presents the fabrication process to develop efficient, reliable and binder-free porous Germanium thin film electrodes with high capacity and superior rate capability. Initially, a thin film of Germanium is deposited via a Plasma Enhanced Chemical Vapor Deposition (PECVD) on top of a metallic substrate. The film is subsequently nanostructured using electrochemical etching in hydrofluoric acid. The fabrication process, along with a comprehensive review of morphological, structural and compositional analysis is presented and complemented by theoretical models. The morphological characterization has been conducted using different microscopy techniques which allowed the identification of the porous structure, crucial to accommodate the ∼ 300% volumetric expansion of Ge during lithiation and delithiation. Structural analysis has been performed using diffraction techniques and X-ray Ab- sorption Spectroscopy (XAS). In-situ XAS measurements at synchrotron facilities (Brookhaven National Laboratories and European Synchrotron Facility) provided in- sight into the reversible changes in Ge atomic structure during cycling. A detailed investigation of the Solid Electrolyte Interface (SEI), a passivating layer forming at the electrode-electrolyte interface, has been conducted. During my research stay at the Denmark Technical University (DTU), efforts were focused on modeling the Ge-electrolyte interface using the Atomic Simulation Environment (ASE). These simulations allowed to study the relaxation of Ge surfaces during lithiation, identifying the most stable structures. Complementing these simulations, experimental measurements across multiple cycling stages have been carried out. Physical and electrochemical characterization of the electrodes are presented in dedicated chapters, together with the preliminary results obtained with atomic simulations. Electrochemical tests demonstrate that the fabricated electrodes deliver outstanding performance across various operating conditions, reaching up to 1250 mAh/g at 1C rate (four times higher than graphite electrodes, which reach only 374 mAh/g at the same C-rate). Furthermore, these electrodes are able to sustain extremely high currents, holding a capacity at 60C comparable to that of graphite at 1C. The nanostructured Germanium electrodes, here described, are particularly suited for aerospace application, where materials must meet stringent reliability standards. The porous structure not only enhances the electrochemical performance but also contributes to improved mechanical stability, making them ideal for high-stress environments such as those encountered in space missions. This is why this research is conducted under the ”GLITTERY” project, entirely founded by the Italian Space Agency.File | Dimensione | Formato | |
---|---|---|---|
PhD_Thesis_DIOLAITI_part1.pdf
embargo fino al 31/03/2026
Dimensione
26.8 MB
Formato
Adobe PDF
|
26.8 MB | Adobe PDF | |
PhD_Thesis_DIOLAITI_part2.pdf
embargo fino al 31/03/2026
Dimensione
46.85 MB
Formato
Adobe PDF
|
46.85 MB | Adobe PDF | |
PhD_Thesis_DIOLAITI_part3.pdf
embargo fino al 31/03/2026
Dimensione
30.58 MB
Formato
Adobe PDF
|
30.58 MB | Adobe PDF |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/220366
URN:NBN:IT:UNIFE-220366