Time-resolved ultrafast spectroscopy has become a fundamental tool for investigating the dynamics of matter on femtosecond and picosecond timescales. Traditionally, such measurements rely on intense pulsed laser to initiate and probe ultrafast processes, often perturbing and potentially degrading the system under investigation. This doctoral thesis explores a paradigm shift in time-resolved spectroscopy moving from classical to quantum light, with the goal of performing time-resolved studies under minimally perturbative and invasive conditions. The first chapter of this thesis introduces the experimental tools of classical ultrafast spectroscopy. In particular, key concepts of non-linear optics, generation of ultrashort light pulses and transient absorption spectroscopy are explained. The second chapter describes a transient absorption spectrometer able to excite matter with tunable ultrashort ultraviolet pulses. Such setup is used to probe the early stages of thermalization of out-of-equilibrium electrons in single-layer graphene excited at the van Hove singularity with an unprecedented time resolution at such energy. The spectrometer is also used to unveil fundamental processes in light-harvesting molecules. In particular, a joint experimental and theoretical study is performed to understand the role of molecular planarization in a mini-carotenoid in the relaxation process from the bright to the first optically dark excited state. The third chapter delves into the foundation of quantum optics and explores the description and generation of nonclassical states of light, such as heralded single photons and entangled photons. Aiming to spectroscopic applications, the fourth chapter is focussed on the spectral features characterization and control of the biphoton state. With a novel approach, based on an interferometric technique, the joint spectral-temporal properties of the entangled photons are investigated. Finally, it is also shown how this technique can be applied to static spectroscopic measurements or in the field of quantum information. The last chapter is devoted to the development of time-resolved spectroscopy in the single-photon regime. By exploiting the intrinsic timing correlations of photon pairs generated from a continuous-wave laser source in a nonlinear crystal, I experimentally demonstrate that ultrafast processes can be studied with high temporal resolution, even in the absence of pulsed laser excitation. This approach is validated through experiments on infrared dyes and on photosynthetic light-harvesting complexes. In particular, single-photon excitation measurments reveal dynamics consistent with the one obtained with classical intense pulsed beams, but with dramatically reduced excitation fluence. In summary, this thesis develops a novel and completely unexplorated approach to ultrafast spectroscopy, showing that quantum light can be applied successfully to this well established field, eventually opening new opportunities to probe and investigate matter.
La spettroscopia ultrarapida risolta nel tempo è diventata uno strumento fondamentale per indagare la dinamica della materia su scale temporali dell’ordine dei femtosecondi e dei picosecondi. Tradizionalmente, tali misure si basano su impulsi laser intensi per iniziare e sondare processi ultraveloci, spesso perturbando e potenzialmente danneggiando il sistema in esame. Questa tesi di dottorato esplora un cambio di paradigma nella spettroscopia risolta nel tempo, passando dalla luce classica alla luce quantistica, con l’obiettivo di effettuare studi in condizioni minimamente perturbative e invasive. Il primo capitolo della tesi introduce gli strumenti sperimentali della spettroscopia ultraveloce classica. In particolare, vengono spiegati i concetti chiave dell’ottica non lineare, la generazione di impulsi di luce ultrabrevi e la spettroscopia di assorbimento transiente. Il secondo capitolo descrive uno spettrometro di assorbimento transiente in grado di eccitare la materia con impulsi ultrabrevi nell’ultravioletto a lunghezza d’onda variabile. Questo sistema viene utilizzato per indagare le prime fasi della termalizzazione degli elettroni fuori equilibrio in grafene monostrato eccitato nella singolarità di van Hove, con una risoluzione temporale senza precedenti a tale energia. Lo spettrometro viene inoltre impiegato per rivelare processi fondamentali in molecole fotosensibili. In particolare, viene condotto uno studio sperimentale e teorico congiunto per comprendere il ruolo della planarizzazione molecolare in un mini-carotenoide nel processo di rilassamento dallo stato eccitato otticamente permesso al primo stato eccitato otticamente vietato. Il terzo capitolo approfondisce le basi dell’ottica quantistica ed esplora la descrizione e la generazione di stati non classici della luce, come i singoli fotoni e i fotoni entangled. Con uno sguardo alle applicazioni spettroscopiche, il quarto capitolo è dedicato alla caratterizzazione e al controllo delle proprietà spettrali dello stato prodotto da spontaneous parametric downconversion. Con un approccio innovativo, basato su una tecnica interferometrica, vengono indagate le proprietà spettrali e temporali congiunte dei fotoni entangled. Infine, viene anche mostrato come tale tecnica possa essere applicata a misure spettroscopiche statiche o nel campo dell’informazione quantistica. L’ultimo capitolo è dedicato allo sviluppo della spettroscopia risolta nel tempo nel regime del singolo fotone. Sfruttando le correlazioni temporali intrinseche delle coppie di fotoni generate da una sorgente laser in continua in un cristallo non lineare, dimostro sperimentalmente che è possibile studiare processi ultraveloci con alta risoluzione temporale, anche in assenza di eccitazione con laser impulsati. Questo approccio viene validato attraverso esperimenti su coloranti a infrarosso e su complessi fotosintetici di raccolta della luce. In particolare, le misure di eccitazione a singolo fotone rivelano dinamiche coerenti con quelle ottenute con fasci pulsati classici intensi, ma con una fluenza di eccitazione drasticamente ridotta. In sintesi, questa tesi sviluppa un approccio nuovo e finora completamente inesplorato alla spettroscopia ultraveloce, dimostrando che la luce quantistica può essere applicata con successo a questo campo ben consolidato, aprendo infine nuove opportunità per sondare e investigare la materia.
Ultrafast optical spectroscopy: from classical to quantum light
Lorenzo, Uboldi
2025
Abstract
Time-resolved ultrafast spectroscopy has become a fundamental tool for investigating the dynamics of matter on femtosecond and picosecond timescales. Traditionally, such measurements rely on intense pulsed laser to initiate and probe ultrafast processes, often perturbing and potentially degrading the system under investigation. This doctoral thesis explores a paradigm shift in time-resolved spectroscopy moving from classical to quantum light, with the goal of performing time-resolved studies under minimally perturbative and invasive conditions. The first chapter of this thesis introduces the experimental tools of classical ultrafast spectroscopy. In particular, key concepts of non-linear optics, generation of ultrashort light pulses and transient absorption spectroscopy are explained. The second chapter describes a transient absorption spectrometer able to excite matter with tunable ultrashort ultraviolet pulses. Such setup is used to probe the early stages of thermalization of out-of-equilibrium electrons in single-layer graphene excited at the van Hove singularity with an unprecedented time resolution at such energy. The spectrometer is also used to unveil fundamental processes in light-harvesting molecules. In particular, a joint experimental and theoretical study is performed to understand the role of molecular planarization in a mini-carotenoid in the relaxation process from the bright to the first optically dark excited state. The third chapter delves into the foundation of quantum optics and explores the description and generation of nonclassical states of light, such as heralded single photons and entangled photons. Aiming to spectroscopic applications, the fourth chapter is focussed on the spectral features characterization and control of the biphoton state. With a novel approach, based on an interferometric technique, the joint spectral-temporal properties of the entangled photons are investigated. Finally, it is also shown how this technique can be applied to static spectroscopic measurements or in the field of quantum information. The last chapter is devoted to the development of time-resolved spectroscopy in the single-photon regime. By exploiting the intrinsic timing correlations of photon pairs generated from a continuous-wave laser source in a nonlinear crystal, I experimentally demonstrate that ultrafast processes can be studied with high temporal resolution, even in the absence of pulsed laser excitation. This approach is validated through experiments on infrared dyes and on photosynthetic light-harvesting complexes. In particular, single-photon excitation measurments reveal dynamics consistent with the one obtained with classical intense pulsed beams, but with dramatically reduced excitation fluence. In summary, this thesis develops a novel and completely unexplorated approach to ultrafast spectroscopy, showing that quantum light can be applied successfully to this well established field, eventually opening new opportunities to probe and investigate matter.File | Dimensione | Formato | |
---|---|---|---|
PhD_Thesis-Uboldi.pdf
embargo fino al 18/04/2026
Dimensione
25.59 MB
Formato
Adobe PDF
|
25.59 MB | Adobe PDF |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/223125
URN:NBN:IT:POLIMI-223125