Arrhythmogenic Cardiomyopathy (AC) is a rare genetic cardiac disease, characterized by ventricular arrhythmias, contractile dysfunction and fibro-adipose replacement of the myocardium. The pathogenic mutations associated with AC are mainly found in desmosomal genes, while in about 50% of cases the genetic cause remains elusive. The variable expressivity of AC suggests that genetic or non-genetic factors could influence its manifestation. Previous research has focused on the understanding of molecular mechanisms driving AC phenotype, but a full knowledge is still missing. Cardiomyocytes contribute to the primary arrhythmic and contractile defects, and cardiac mesenchymal stromal cells (CMSC) are responsible for the fibro-adipose phenotype, which also worsens contractility and arrhythmias. With the help of ‘omics technologies, this thesis aimed to improve the genetic, epigenetic and gene expression knowledge of AC pathogenesis. Firstly, we aimed to find rare potential high-impact variants for supporting future progress in AC genotyping, and to assess the impact of genetic polymorphisms on the disease clinical severity. The second goal was to enrich the understanding of pathogenic molecular pathways of AC by exploring the gene expression profile and the role of epigenetics in AC-CMSC. We performed next-generation DNA sequencing on 82 AC probands, analysing 174 genes associated with inherited cardiovascular diseases. We identified 141 rare variants and, evaluating the pathogenicity, 23 mutations were classified as high impact, including variants in non-AC genes (e.g. ABCC9, APOB, MIB1). Future validation in larger cohorts could confirm their association with AC. Then, we found 69 genotype-phenotype significant associations between common variants and clinical parameters. Variants associated with arrhythmic phenotypes were found in genes linked to arrhythmias (e.g. KCNQ1, HCN4) and other cardiomyopathies (e.g. MYBPC3, MYL2). Associations involving substrate impairments were found with genes linked to muscle dysfunctions (e.g. LAMA2, SGCD). Arrhythmia-associated polymorphisms were included in event-free survival analyses, and they were confirmed to be associated with an increased occurrence of arrhythmic events even during patients’ follow-up. Secondarily, by a hypothesis-free approach, based on DNA methylation and gene expression profile of CMSC derived from 7 AC patients and 7 healthy controls (HC), we detected some dysregulated pathways not previously identified in AC-CMSC. Methylome analysis identified 74 differentially methylated bases, mostly on the mitochondrial DNA. Transcriptome analysis revealed 327 genes that were more expressed and 202 genes less expressed in AC- vs. HC-CMSC. Genes implicated in mitochondrial respiration and in epithelial-to-mesenchymal transition (EMT) were more expressed, and cell cycle genes were less expressed in AC vs. HC-CMSC. Through enrichment and gene network analysis, we identified some differentially regulated pathways, not associated with AC before, including mitochondrial functioning and chromatin organization, both in line with methylome results. Functional validations confirmed that AC-CMSC exhibited higher amounts of mitochondria and ROS, a lower proliferation rate and a more pronounced EMT compared to the HC. Due to the evidence of epigenetic involvement in AC, we performed an epigenetic drug screening on AC-CMSC, and we identified 5 promising drugs (splitomicin, SBHA, CPTH6, BVT-948, and PBIT) able to modulate the fibro-adipose phenotype. ‘Omics analyses performed on our AC cohort constitute the starting point to address the current lack of knowledge of the etiologic and patho-mechanistic landscape of AC. Our findings pave the way for novel and deep genetic studies to overcome the present genetic limitations. Moreover, our results may hold the keys to the discovery of new druggable therapeutic targets and new drugs with the goal to improve the clinical management of AC.
La Cardiomiopatia Aritmogena (CA) è una rara malattia genetica del cuore, caratterizzata da aritmie ventricolari, disfunzione contrattile e sostituzione fibro-adiposa del miocardio. Le mutazioni patogenetiche associate alla CA si trovano principalmente nei geni desmosomiali, mentre in circa il 50% dei casi la causa genetica rimane sconosciuta. La variabilità dell’espressione clinica della CA suggerisce che fattori genetici, e non, possano influenzarne la manifestazione. Studi precedenti si sono concentrati sui meccanismi molecolari alla base della CA, ma una conoscenza completa è ancora assente. I cardiomiociti contribuiscono ai difetti aritmici e contrattili primari, mentre le cellule stromali mesenchimali cardiache (CSMC) sono responsabili del fenotipo fibro-adiposo. Con l’aiuto delle tecnologie ‘omiche, questa tesi mira a migliorare la conoscenza genetica, epigenetica e di espressione genica della patogenesi della CA. In primo luogo, abbiamo cercato varianti rare potenzialmente ad alto impatto per supportare futuri progressi nella genetica della CA e valutare l’impatto dei polimorfismi sulla gravità clinica della malattia. Il secondo obiettivo era approfondire i meccanismi molecolari patogenetici della CA esplorando il profilo di espressione genica e il ruolo dell’epigenetica nelle CSMC di pazienti con CA. Abbiamo effettuato sequenziato il DNA di 82 pazienti affetti da CA, analizzando 174 geni associati a malattie cardiovascolari ereditarie. Sono state identificate 141 varianti rare e 23 mutazioni sono risultate ad alto impatto, incluse varianti in geni non associati alla CA (es. ABCC9, APOB, MIB1). Una futura validazione in coorti più ampie potrebbe confermare la loro associazione con la malattia. Abbiamo inoltre individuato 69 associazioni significative tra varianti comuni e parametri clinici. Varianti legate al fenotipo aritmico sono state trovate in geni associati alle aritmie (es. KCNQ1, HCN4) e ad altre cardiomiopatie (es. MYBPC3, MYL2). Associazioni con alterazioni del substrato sono emerse in geni coinvolti in disfunzioni muscolari (es. LAMA2, SGCD). I polimorfismi associati ad aritmie sono stati inclusi in analisi di sopravvivenza, confermandone l’associazione con un maggior rischio di eventi aritmici anche nel follow-up dei pazienti. Successivamente, tramite un approccio privo di ipotesi, basato su profili di metilazione del DNA ed espressione genica di CSMC derivanti da 7 pazienti CA e 7 controlli sani (CTR), sono stati identificati vie molecolari alterate finora non note nelle CSMC-CA. L’analisi del metiloma ha evidenziato 74 siti metilati in modo differenziale, prevalentemente nel DNA mitocondriale. L’analisi del trascrittoma ha rivelato 327 geni sovra-espressi e 202 sotto-espressi in CSMC-CA rispetto ai CTR. I geni coinvolti nella respirazione mitocondriale e nella transizione epitelio-mesenchimale (TEM) erano più espressi, mentre i geni del ciclo cellulare erano meno espressi. L’analisi del trascrittoma ha identificato vie molecolari alterate mai associate prima alla CA, tra cui il funzionamento mitocondriale e l’organizzazione della cromatina, coerenti con i risultati del metiloma. Le validazioni funzionali hanno confermato che le CSMC-CA presentano una maggiore quantità di mitocondri e ROS, una minore proliferazione e una TEM più marcata rispetto ai CTR. A fronte delle evidenze dell’implicazione epigenetica nella CA, è stato eseguito uno screening farmacologico epigenetico su CSMC-CA, identificando 5 farmaci promettenti (splitomicina, SBHA, CPTH6, BVT-948 e PBIT) capaci di modulare il fenotipo fibro-adiposo. Le analisi ‘omiche condotte sulla nostra coorte CA rappresentano un punto di partenza per colmare le lacune attuali sull’eziologia e i meccanismi patogenetici della CA, aprendo la strada a nuovi studi genetici approfonditi e potrebbero fornire la chiave per identificare nuovi target terapeutici e farmaci in grado di migliorare la gestione clinica della malattia.
'Omics in Arrhythmogenic Cardiomyopathy
LIPPI, MELANIA
2025
Abstract
Arrhythmogenic Cardiomyopathy (AC) is a rare genetic cardiac disease, characterized by ventricular arrhythmias, contractile dysfunction and fibro-adipose replacement of the myocardium. The pathogenic mutations associated with AC are mainly found in desmosomal genes, while in about 50% of cases the genetic cause remains elusive. The variable expressivity of AC suggests that genetic or non-genetic factors could influence its manifestation. Previous research has focused on the understanding of molecular mechanisms driving AC phenotype, but a full knowledge is still missing. Cardiomyocytes contribute to the primary arrhythmic and contractile defects, and cardiac mesenchymal stromal cells (CMSC) are responsible for the fibro-adipose phenotype, which also worsens contractility and arrhythmias. With the help of ‘omics technologies, this thesis aimed to improve the genetic, epigenetic and gene expression knowledge of AC pathogenesis. Firstly, we aimed to find rare potential high-impact variants for supporting future progress in AC genotyping, and to assess the impact of genetic polymorphisms on the disease clinical severity. The second goal was to enrich the understanding of pathogenic molecular pathways of AC by exploring the gene expression profile and the role of epigenetics in AC-CMSC. We performed next-generation DNA sequencing on 82 AC probands, analysing 174 genes associated with inherited cardiovascular diseases. We identified 141 rare variants and, evaluating the pathogenicity, 23 mutations were classified as high impact, including variants in non-AC genes (e.g. ABCC9, APOB, MIB1). Future validation in larger cohorts could confirm their association with AC. Then, we found 69 genotype-phenotype significant associations between common variants and clinical parameters. Variants associated with arrhythmic phenotypes were found in genes linked to arrhythmias (e.g. KCNQ1, HCN4) and other cardiomyopathies (e.g. MYBPC3, MYL2). Associations involving substrate impairments were found with genes linked to muscle dysfunctions (e.g. LAMA2, SGCD). Arrhythmia-associated polymorphisms were included in event-free survival analyses, and they were confirmed to be associated with an increased occurrence of arrhythmic events even during patients’ follow-up. Secondarily, by a hypothesis-free approach, based on DNA methylation and gene expression profile of CMSC derived from 7 AC patients and 7 healthy controls (HC), we detected some dysregulated pathways not previously identified in AC-CMSC. Methylome analysis identified 74 differentially methylated bases, mostly on the mitochondrial DNA. Transcriptome analysis revealed 327 genes that were more expressed and 202 genes less expressed in AC- vs. HC-CMSC. Genes implicated in mitochondrial respiration and in epithelial-to-mesenchymal transition (EMT) were more expressed, and cell cycle genes were less expressed in AC vs. HC-CMSC. Through enrichment and gene network analysis, we identified some differentially regulated pathways, not associated with AC before, including mitochondrial functioning and chromatin organization, both in line with methylome results. Functional validations confirmed that AC-CMSC exhibited higher amounts of mitochondria and ROS, a lower proliferation rate and a more pronounced EMT compared to the HC. Due to the evidence of epigenetic involvement in AC, we performed an epigenetic drug screening on AC-CMSC, and we identified 5 promising drugs (splitomicin, SBHA, CPTH6, BVT-948, and PBIT) able to modulate the fibro-adipose phenotype. ‘Omics analyses performed on our AC cohort constitute the starting point to address the current lack of knowledge of the etiologic and patho-mechanistic landscape of AC. Our findings pave the way for novel and deep genetic studies to overcome the present genetic limitations. Moreover, our results may hold the keys to the discovery of new druggable therapeutic targets and new drugs with the goal to improve the clinical management of AC.File | Dimensione | Formato | |
---|---|---|---|
phd_unimib_891265.pdf
accesso aperto
Dimensione
8.83 MB
Formato
Adobe PDF
|
8.83 MB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/223521
URN:NBN:IT:UNIMIB-223521