La crescita continua della domanda di energia a livello mondiale e la progressiva diminuzione delle risorse energetiche tradizionali hanno spinto la comunità internazionale a concentrare i propri interessi di ricerca sulle tecnologie e metodologie per migliorare l'efficienza energetica e la sostenibibilità ambientale. In questo contesto gli algoritmi di intelligenza artificiale applicati alle tecnologie microgrids rappresentano l'elemento pi๠innovativo per favorire il decentramento energetico e ottimizzare l'efficienza dei sistemi di generazione e distribuzione locale dell'energia. L'adozione di tecniche di intelligenza computazionale e di metodologie di profilazione automatica degli utenti finali consente di motivare il cambiamento comportamentale degli utenti utilizzando adeguati incentivi economici. Inoltre la realizzazione di unità di gestione e controllo, fisicamente vicine alle risorse energetiche distribuite (DER) consente di realizzare efficacemente il bilanciamento tra la produzione e il consumo di energia. D'altra parte i sistemi di intelligenza artificiale sono facilmente implementabili con tecnologie software distribuite e architetture SOA. Questo facilita la diffusione di questi sistemi grazie al superamento dei problemi di complessità computazionale e abilita l'implementazione distribuita delle operazioni di controllo su distretti energetici di dimensione variabile. Il risultato ਠun incremento della responsività , sicurezza, affidabilità dell'intero sistema elettrico, nonchà© la minimizzazione delle perdite connesse alla distribuzione dell'energia generata da centrali remote a vantaggio di una maggiore sostenibilità ambientale.
Tecniche di intelligenza artificiale per l'ottimizzazione energetica di una microgrid
2014
Abstract
La crescita continua della domanda di energia a livello mondiale e la progressiva diminuzione delle risorse energetiche tradizionali hanno spinto la comunità internazionale a concentrare i propri interessi di ricerca sulle tecnologie e metodologie per migliorare l'efficienza energetica e la sostenibibilità ambientale. In questo contesto gli algoritmi di intelligenza artificiale applicati alle tecnologie microgrids rappresentano l'elemento pi๠innovativo per favorire il decentramento energetico e ottimizzare l'efficienza dei sistemi di generazione e distribuzione locale dell'energia. L'adozione di tecniche di intelligenza computazionale e di metodologie di profilazione automatica degli utenti finali consente di motivare il cambiamento comportamentale degli utenti utilizzando adeguati incentivi economici. Inoltre la realizzazione di unità di gestione e controllo, fisicamente vicine alle risorse energetiche distribuite (DER) consente di realizzare efficacemente il bilanciamento tra la produzione e il consumo di energia. D'altra parte i sistemi di intelligenza artificiale sono facilmente implementabili con tecnologie software distribuite e architetture SOA. Questo facilita la diffusione di questi sistemi grazie al superamento dei problemi di complessità computazionale e abilita l'implementazione distribuita delle operazioni di controllo su distretti energetici di dimensione variabile. Il risultato ਠun incremento della responsività , sicurezza, affidabilità dell'intero sistema elettrico, nonchà© la minimizzazione delle perdite connesse alla distribuzione dell'energia generata da centrali remote a vantaggio di una maggiore sostenibilità ambientale.I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/233050
URN:NBN:IT:UNIROMA3-233050