Circular data arise naturally in many scientific fields, for example oceanography (wave directions), meteorology (wind directions), biology (animal movement). Due to the circular domain, to the sensitivity of descriptive and inferential results to the starting point and orientation on the circle, analysis of circular data is challenging. We propose models for temporal and spatio-temporal circular and circular-linear data. We show that under a Bayesian framework, the complex nature of circular data and the difficulties in a joint modelling of circular-linear variables can be easily overcome. Two main research frameworks are touched. The first deals with the build of spatio-temporal models for circular variables, while the second address topics in the joint temporal classification of circular-linear variables. In all the models proposed, exploiting data augmentation techniques, we are able to propose efficient, and easy to implement, Markov chain Monte Carlo algorithm.

Temporal and spatio-temporal modes for circular and circular-linear data

-
2016

Abstract

Circular data arise naturally in many scientific fields, for example oceanography (wave directions), meteorology (wind directions), biology (animal movement). Due to the circular domain, to the sensitivity of descriptive and inferential results to the starting point and orientation on the circle, analysis of circular data is challenging. We propose models for temporal and spatio-temporal circular and circular-linear data. We show that under a Bayesian framework, the complex nature of circular data and the difficulties in a joint modelling of circular-linear variables can be easily overcome. Two main research frameworks are touched. The first deals with the build of spatio-temporal models for circular variables, while the second address topics in the joint temporal classification of circular-linear variables. In all the models proposed, exploiting data augmentation techniques, we are able to propose efficient, and easy to implement, Markov chain Monte Carlo algorithm.
2016
en
Categorie ISI-CRUI::Scienze economiche e statistiche
Cicular data
Hidden Markov model
Process
Scienze economiche e statistiche
Settori Disciplinari MIUR::Scienze economiche e statistiche
Spatio-temporal process
Università degli Studi Roma Tre
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14242/267332
Il codice NBN di questa tesi è URN:NBN:IT:UNIROMA3-267332