In this work the candidate proposes an innovative real-time stereo vision system for intelligent/autonomous ground vehicles able to provide a full and reliable 3D reconstruction of the terrain and the obstacles. The terrain has been computed using rational B-Splines surfaces performed by re-weighted iterative least square fitting and equalization. The cloud of 3D points, generated by the processing of the Disparity Space Image (DSI), is sampled into a 2.5D grid map; then grid points are iteratively fitted into rational B-Splines surfaces with different patterns of control points and degrees, depending on traversability consideration. The obtained surface also represents a segmentation of the initial 3D points into terrain inliers and outliers. As final contribution, a new obstacle detection approach is presented, combined with terrain estimation system, in order to model stationary and moving objects in the most challenging scenarios.

3D Vision-based Perception and Modelling techniques for Intelligent Ground Vehicles

-
2015

Abstract

In this work the candidate proposes an innovative real-time stereo vision system for intelligent/autonomous ground vehicles able to provide a full and reliable 3D reconstruction of the terrain and the obstacles. The terrain has been computed using rational B-Splines surfaces performed by re-weighted iterative least square fitting and equalization. The cloud of 3D points, generated by the processing of the Disparity Space Image (DSI), is sampled into a 2.5D grid map; then grid points are iteratively fitted into rational B-Splines surfaces with different patterns of control points and degrees, depending on traversability consideration. The obtained surface also represents a segmentation of the initial 3D points into terrain inliers and outliers. As final contribution, a new obstacle detection approach is presented, combined with terrain estimation system, in order to model stationary and moving objects in the most challenging scenarios.
2015
Inglese
Disparity Space Image
Ingegneria elettronica
Intelligent Vehicles
Obstacle Detection
Stereo Vision
Terrain Estimation
3D reconstruction
Università degli Studi di Parma
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14242/272896
Il codice NBN di questa tesi è URN:NBN:IT:UNIPR-272896