Critical Infrastructure Protection (CIP) is a concept that relates to the preparedness and response to severe incidents involving the critical infrastructures of a country. These incidents include terrorist attacks or large black--?outs that may produce severe consequences for the citizens and the society in general. Traditionally, each infrastructure takes care of its own system. For example, reliability indexes are used by the electrical utility to measure the quality of the electrical service. However, after the events of 9/11, Katrina, and others, it became clear that considering infrastructures separately was not sufficient to prepare for and respond to large disasters in an effective manner that prioritizes not the individual infrastructure states but the overall societal impact. A new era of research on interdependencies and best decisions during emergencies emerged. A relatively large body of knowledge has built in recent years for modeling the CI interdependencies problem from a number of points of view. This is an area that affects society as a whole and, therefore, many disciplines have to come together for its understanding including computer science, systems engineering, and human aspects. This thesis represents an extensive and thorough work not only in reviewing the state--?of--?the art in critical infrastructure protection but also in bringing together, within an integrated structural framework, a number of models that represent various aspects of the problem. This framework is applied to build and analyze realistic scenarios. The body of the thesis can be divided into three aspects: I) Preliminary Notions (Chapters 2 and 3), II) Situation Awareness and Impact Analysis Methodologies (Chapters 4, 5, and 6), and III) Decision Support Systems (Chapter 7). This sequence builds the path from data collection to situational awareness, to best responses.

Methodologies for emergency management in critical infrastructures

2015

Abstract

Critical Infrastructure Protection (CIP) is a concept that relates to the preparedness and response to severe incidents involving the critical infrastructures of a country. These incidents include terrorist attacks or large black--?outs that may produce severe consequences for the citizens and the society in general. Traditionally, each infrastructure takes care of its own system. For example, reliability indexes are used by the electrical utility to measure the quality of the electrical service. However, after the events of 9/11, Katrina, and others, it became clear that considering infrastructures separately was not sufficient to prepare for and respond to large disasters in an effective manner that prioritizes not the individual infrastructure states but the overall societal impact. A new era of research on interdependencies and best decisions during emergencies emerged. A relatively large body of knowledge has built in recent years for modeling the CI interdependencies problem from a number of points of view. This is an area that affects society as a whole and, therefore, many disciplines have to come together for its understanding including computer science, systems engineering, and human aspects. This thesis represents an extensive and thorough work not only in reviewing the state--?of--?the art in critical infrastructure protection but also in bringing together, within an integrated structural framework, a number of models that represent various aspects of the problem. This framework is applied to build and analyze realistic scenarios. The body of the thesis can be divided into three aspects: I) Preliminary Notions (Chapters 2 and 3), II) Situation Awareness and Impact Analysis Methodologies (Chapters 4, 5, and 6), and III) Decision Support Systems (Chapter 7). This sequence builds the path from data collection to situational awareness, to best responses.
2015
en
Categorie ISI-CRUI::Ingegneria industriale e dell'informazione::AI, Robotics & Automatic Control
critical infrastructures
data fusion
decision support systems
Ingegneria industriale e dell'informazione
Settori Disciplinari MIUR::Ingegneria industriale e dell'informazione::AUTOMATICA
Università degli Studi Roma Tre
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14242/273367
Il codice NBN di questa tesi è URN:NBN:IT:UNIROMA3-273367