This thesis concerns the study of the magnetic and structural transformations that occur in the 3d metals when they are compressed up to extreme pressures. The investigation has been carried out using polarized X-ray absorption (X-ray magnetic circular dichroism or XMCD) coupled to X-ray diffraction and DTF calculations and applied to the cases of cobalt, nickel and iron-cobalt (FeCo) alloys. In particular, in cobalt we present the first experimental evidence of pressure-induced suppression of ferromagnetism and we explore the interplay between structural and magnetic changes. The case of nickel, that is structurally stable over a wide range of pressures, allows to go deeper into the interpretation of the K-edge XMCD signal, so far still unsettled. Finally the investigation of the FeCo alloys is aimed at understanding the role played by the chemical order in tuning the high pressure structural and magnetic properties.
Magnetism structure and chemical order in the 3d metals and their alloys at extreme pressures
2012
Abstract
This thesis concerns the study of the magnetic and structural transformations that occur in the 3d metals when they are compressed up to extreme pressures. The investigation has been carried out using polarized X-ray absorption (X-ray magnetic circular dichroism or XMCD) coupled to X-ray diffraction and DTF calculations and applied to the cases of cobalt, nickel and iron-cobalt (FeCo) alloys. In particular, in cobalt we present the first experimental evidence of pressure-induced suppression of ferromagnetism and we explore the interplay between structural and magnetic changes. The case of nickel, that is structurally stable over a wide range of pressures, allows to go deeper into the interpretation of the K-edge XMCD signal, so far still unsettled. Finally the investigation of the FeCo alloys is aimed at understanding the role played by the chemical order in tuning the high pressure structural and magnetic properties.I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/283176
URN:NBN:IT:UNIROMA3-283176