Ion implantation enables the localized introduction of chemical impurities and lattice point defects that can be engineered, with the help of post-implantation physical treatments, to tailor the performance of semiconductor devices in a manner that would not be possible otherwise. This technology has been widely used and improved in the last decades, thus becoming an indispensable means for the manufacturing of silicon-based microelectronic devices. In recent years, the demand of a massive energy transition has driven the interest of the scientific community towards the technological development of wide bandgap (WBG) semiconductors, such as silicon carbide (SiC) and gallium nitride (GaN), with the concomitant need to transfer and adapt the ion implantation know-how to these new generation materials. Doping of SiC presents indeed several challenges connected to the very different physico-chemical properties in respect to silicon, even though the SiC is chemically analogous to silicon and a similar behaviour of dopants is observed. In particular, the extremely low diffusion coefficients for impurities and defects in SiC has put a limit in the use of thermal diffusion methods traditionally employed for silicon, making ion implantation the only valid doping strategy for this material. In addition, the breakdown voltage required for high power applications has led to the production of thicker substrates, and the need for efficient doping methodologies capable of covering long distances has required further developments, leading to the use of light particles and ion channelling for the purpose of implanting deeper into the material. In this thesis the technical aspects relating the analysis of deep ion implants in silicon and 4H-SiC (silicon carbide) and the challenges connected to the integration of analytical tools for in-line analysis and monitoring of large-scale implantation were explored, with a focus on the characterisation of proton implants and implants achieved under ion channelling conditions. An existing protocol for Dynamic SIMS (D-SIMS) analysis of deep proton implants in silicon was revised and optimised, demonstrating the capability of SIMS in measuring low dose deep hydrogen profiles with remarkable detection limits and probing depths, and pointing out the possibility of coupling this analytical tool with the well-established Spreading Resistance Profiling (SRP) for industrial solutions. Various Deep Level Transient Spectroscopy (DLTS) experiments were conducted on a high voltage 4H-SiC P-i-N diode, with the aim of characterising the thermal properties of majority and minority traps in the as-grown material and after proton implantation and exploring the capabilities and limitations of junction DLTS in the analysis of minority traps, including minority trap depth profiling. The information obtained constituted the basis for an additional study: characterisation of medium energy channelling proton implants in 4H-SiC. In this work, D-SIMS and DLTS defect profiling were combined to study the effect of ion channelling on the distribution of implanted hydrogen and radiation induced defects in high quality 4H-SiC epitaxial layers. The last case-study discussed in this thesis is a depth profiling analysis of medium energy phosphorus and aluminium channelling implants in 4H-SiC realized by industrial means. In this work, the effects of ion beam tilt and the influence of superficial oxide layer on the channelling distribution of phosphorus and aluminium implants were investigated using D-SIMS and the results compared with MC-BCA simulations.
L'impiantazione ionica permette l'introduzione localizzata di impurezze chimiche e difetti reticolari che possono essere ingegnerizzati, con l'aiuto di trattamenti fisici post-impianto, per migliorare le prestazioni dei dispositivi a semiconduttore in un modo che altrimenti non sarebbe possibile. Questa tecnologia è stata ampiamente utilizzata e migliorata negli ultimi decenni, diventando così un mezzo indispensabile per la produzione di dispositivi microelettronici a base di silicio. Negli ultimi anni, l’esigenza di una massiccia transizione energetica ha spinto l’interesse della comunità scientifica verso lo sviluppo tecnologico di semiconduttori ad ampio bandgap (WBG), come il carburo di silicio (SiC) e il nitruro di gallio (GaN), con la concomitante necessità di trasferire e adattare il know-how sull'impiantazione ionica a questi materiali di nuova generazione. Il drogaggio del SiC presenta infatti diverse sfide legate alle proprietà fisico-chimiche molto diverse rispetto al silicio, anche se il SiC è chimicamente analogo al silicio e si osserva un comportamento simile dei droganti. In particolare, i coefficienti di diffusione estremamente bassi per impurezze e difetti nel SiC hanno posto un limite nell'uso dei metodi di diffusione termica tradizionalmente impiegati per il silicio, rendendo l'impianto ionico l'unica strategia di drogaggio valida per questo materiale. Inoltre, la tensione di breakdown richiesta per le applicazioni ad alta potenza ha portato alla produzione di substrati più spessi, e la necessità di metodologie di drogaggio efficienti in grado di coprire lunghe distanze ha richiesto ulteriori sviluppi, portando all'uso di particelle leggere e incanalamento ionico al fine di impiantare più in profondità nel materiale. In questa tesi sono stati esplorati gli aspetti tecnici relativi all'analisi di impianti ionici profondi in silicio e 4H-SiC (carburo di silicio) e le sfide connesse all'integrazione di strumenti analitici per l'analisi in linea e il monitoraggio di impianti su larga scala, con una focus sulla caratterizzazione di impianti protonici e impianti realizzati in condizioni di incanalamento ionico. Un protocollo esistente per l'analisi Dynamic SIMS (D-SIMS) di impianti protonici profondi in silicio è stato rivisto e ottimizzato, dimostrando la capacità del SIMS di misurare profili di idrogeno profondo a basse dosi con notevoli limiti di rivelabilità e profondità sondate, e sottolineando la possibilità di accoppiare questo strumento analitico con il più utilizzato Spreading Resistance Profiling (SRP) per soluzioni industriali. Sono stati condotti vari esperimenti di deep level transient spectroscopy (DLTS) su diodi P-i-N in 4H-SiC ad alta tensione, con l'obiettivo di caratterizzare le proprietà termiche delle trappole maggioritarie e minoritarie nel materiale as-grown e dopo in seguito a impianto protonico ed esplorare le capacità e i limiti del junction DLTS nell'analisi delle trappole minoritarie, incluso il depth profiling di trappole minoritarie. Le informazioni ottenute hanno costituito la base per un ulteriore studio: caratterizzazione di impianti protonici in channelling in 4H-SiC. In questo lavoro, D-SIMS e DLTS sono stati impiegati per studiare l'effetto dell’incanalamento ionico sulla distribuzione dell'idrogeno impiantato e dei difetti indotti dalle radiazioni in strati epitassiali di 4H-SiC. L'ultimo caso studio discusso in questa tesi è un'analisi di depth profiling di impianti in channelling di fosforo e alluminio a media energia in 4H-SiC realizzati con mezzi industriali. In questo lavoro, gli effetti dell'inclinazione del fascio ionico e l'influenza dello strato di ossido superficiale sulla distribuzione degli impianti di fosforo e alluminio sono stati studiati utilizzando D-SIMS e i risultati confrontati con simulazioni MC-BCA.
Deep ion implantation of silicon and silicon carbide for power electronics applications: depth profiling of medium energy proton implants and channelling implants of industrial interest [Impiantazione ionica profonda in silicio e carburo di silicio per applicazioni nell’elettronica di potenza: depth profiling di impianti protonici di media energia e impianti in channelling di interesse industriale]
SAMPERI, ORAZIO
2025
Abstract
Ion implantation enables the localized introduction of chemical impurities and lattice point defects that can be engineered, with the help of post-implantation physical treatments, to tailor the performance of semiconductor devices in a manner that would not be possible otherwise. This technology has been widely used and improved in the last decades, thus becoming an indispensable means for the manufacturing of silicon-based microelectronic devices. In recent years, the demand of a massive energy transition has driven the interest of the scientific community towards the technological development of wide bandgap (WBG) semiconductors, such as silicon carbide (SiC) and gallium nitride (GaN), with the concomitant need to transfer and adapt the ion implantation know-how to these new generation materials. Doping of SiC presents indeed several challenges connected to the very different physico-chemical properties in respect to silicon, even though the SiC is chemically analogous to silicon and a similar behaviour of dopants is observed. In particular, the extremely low diffusion coefficients for impurities and defects in SiC has put a limit in the use of thermal diffusion methods traditionally employed for silicon, making ion implantation the only valid doping strategy for this material. In addition, the breakdown voltage required for high power applications has led to the production of thicker substrates, and the need for efficient doping methodologies capable of covering long distances has required further developments, leading to the use of light particles and ion channelling for the purpose of implanting deeper into the material. In this thesis the technical aspects relating the analysis of deep ion implants in silicon and 4H-SiC (silicon carbide) and the challenges connected to the integration of analytical tools for in-line analysis and monitoring of large-scale implantation were explored, with a focus on the characterisation of proton implants and implants achieved under ion channelling conditions. An existing protocol for Dynamic SIMS (D-SIMS) analysis of deep proton implants in silicon was revised and optimised, demonstrating the capability of SIMS in measuring low dose deep hydrogen profiles with remarkable detection limits and probing depths, and pointing out the possibility of coupling this analytical tool with the well-established Spreading Resistance Profiling (SRP) for industrial solutions. Various Deep Level Transient Spectroscopy (DLTS) experiments were conducted on a high voltage 4H-SiC P-i-N diode, with the aim of characterising the thermal properties of majority and minority traps in the as-grown material and after proton implantation and exploring the capabilities and limitations of junction DLTS in the analysis of minority traps, including minority trap depth profiling. The information obtained constituted the basis for an additional study: characterisation of medium energy channelling proton implants in 4H-SiC. In this work, D-SIMS and DLTS defect profiling were combined to study the effect of ion channelling on the distribution of implanted hydrogen and radiation induced defects in high quality 4H-SiC epitaxial layers. The last case-study discussed in this thesis is a depth profiling analysis of medium energy phosphorus and aluminium channelling implants in 4H-SiC realized by industrial means. In this work, the effects of ion beam tilt and the influence of superficial oxide layer on the channelling distribution of phosphorus and aluminium implants were investigated using D-SIMS and the results compared with MC-BCA simulations.File | Dimensione | Formato | |
---|---|---|---|
thesis_oraziosamperi.pdf
accesso aperto
Dimensione
4.01 MB
Formato
Adobe PDF
|
4.01 MB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/295284
URN:NBN:IT:UNICT-295284