4H-silicon carbide (4H-SiC) is a wide band gap semiconductor that is gathering increasing attention for applications in high-power and high-temperature electronic devices. In particular, metal-oxide-semiconductor field-effect transistors based on 4H-SiC (4H-SiC MOSFETs) are already commercially available and employs silicon dioxide (SiO2) as gate dielectric. However, the inherent challenges associated with the conventional SiO2/4H-SiC interface, such as high interface state density and suboptimal dielectric properties, necessitate the exploration of alternative gate insulators. The research conducted during the Ph.D. activities summarized in this thesis have been focused on the study of high-κ aluminium-based dielectrics deposited on 4H-SiC via thermal- and plasma enhanced-Atomic Layer Deposition (ALD). In particular, the depositions of aluminium oxide (Al2O3), aluminium nitride (AlN), their stacked combinations and Al2O3/HfO2 mixture have been considered. Structural and chemical characterizations have been performed via in-situ spectroscopic ellipsometry (SE), Atomic Force Microscopy (AFM) and conductive-AFM, high resolution X-ray diffraction (HR-XRD) and transmission electron microscopy (TEM) and scanning-TEM coupled with dispersive X-ray spectroscopy (EDX) and electron energy loss spectroscopy (EELS), providing information on the effect of different deposition processes or substrates during early-stage growth, thickness uniformity, interface structural quality, chemical composition, morphology and crystalline structure of the deposited films. Dielectric properties have been evaluated and correlated with structural features via electrical characterizations, such as capacitance-voltage (C-V) and current voltage (I-V) measurements on metal-insulator-semiconductor (MIS) capacitors fabricated on the deposited samples, or at the nanoscale using C-AFM. Dielectric quality has been evaluated in terms of charges or trap states inside the insulator or at the semiconductor interface, and also intrinsic properties such as dielectric permittivity have been calculated. The findings reveal useful insights on the effects of different ALD process parameters and structural and electrical properties. PE-ALD shows better dielectric conformality than T-ALD in the case of Al2O3 on 4H-SiC, whereas higher oxygen contamination and induced damage has been observed if AlN is used as interface layer between the oxide layer and the 4H-SiC substrate. Plasma pulsing time is demonstrated to influence the crystalline phase selectivity of AlN on 4H-SiC substrate. Finally, Al2O3/AlN bilayer exhibits improved dielectric and interface quality with respect the single Al2O3 layer and Al:Hf nanolaminates showed tuneable dielectric constant value by controlling the composition via different ALD cycles alternation. Although some aspects related to the dielectric behaviour, such as the potential impact of thermal budgets and some integration issues, deserve further investigation, the preliminary achievements of this thesis already enabled to emphasize the potential of ALD-engineered Albased dielectrics, paving the way for their future application in 4H-SiC power MOSFETs technology.
Il carburo di silicio 4H (4H-SiC) è un semiconduttore ad ampio band gap che attira sempre maggiore attenzione per applicazioni in dispositivi elettronici ad elevata potenza o operanti ad alte temperature. In particolare, i metal-oxide-semiconductor field-effect transistors ottenuti su 4H-SiC (4H-SiC MOSFETs) sono già disponibili in commercio, impiegando l'ossido di silicio (SiO2) come dielettrico di gate. Tuttavia, problematiche intrinseche associate alla convenzionale interfaccia SiO2/4H-SiC, quali l'alta densità di stati interfacciali e le proprietà dielettriche non ottimali, rendono necessario lo studio di materiali isolanti di gate alternativi. La ricerca svolta durante le attività di dottorato, riassunta in questa tesi, si è concentrata sullo studio di isolanti ad ad alta costante dielettrica (high-k), alluminum-based, depositati su 4H-SiC tramite thermal e plasma enhanced-Atomic Layer Deposition (ALD). In particolare, è stata studiata la deposizione di ossido di alluminio (Al2O3), nitruro di alluminio (AlN), le loro combinazioni in stack e mixing nanometrici di Al2O3/HfO2. Le caratterizzazioni strutturali e chimiche sono state effettuate mediante ellissometria spettroscopica in-situ (SE), microscopia a forza atomica (AFM) e AFM conduttiva (C-AFM), diffrazione di raggi X ad alta risoluzione (HR-XRD), microscopia elettronica a trasmissione (TEM) e TEM a scansione (STEM) accoppiata con spettroscopia a dispersione di raggi X (EDX) e spettroscopia di perdita di energia degli elettroni (EELS), fornendo informazioni sull’effetto dei diversi processi di deposizione o dei substrati durante la crescita iniziale, la uniformità di spessore, la qualità strutturale dell'interfaccia, la composizione chimica, la morfologia e la struttura cristallina dei film depositati. Le proprietà dielettriche sono state valutate e correlate con le caratteristiche strutturali tramite caratterizzazioni elettriche, come misure in tensione di capacità (C-V) e corrente (I-V) su condensatori metal-insulator-semiconductor (MIS) fabbricati a partire dai campioni depositati, o in alternativa a livello nanometrico utilizzando C-AFM. La qualità dielettrica è stata valutata in termini di cariche o stati di trappola all'interno dell'isolante o all'interfaccia con il semiconduttore, e sono state calcolate anche proprietà intrinseche come la permittività dielettrica. I risultati rivelano informazioni utili sugli effetti di diversi parametri di processo ALD e sulle proprietà strutturali ed elettriche. I processi plasma enhanced-ALD (PE-ALD) mostrano una migliore conformità delle proprietà dielettriche rispetto ai processi thermal-ALD (T-ALD) nel caso di Al2O3 su 4H-SiC, mentre una maggiore contaminazione e danneggiamento da ossigeno sono stati osservati se si utilizza AlN come strato interfaccia tra lo strato ossido e il substrato 4H-SiC. È stato dimostrato che il pulsing time del plasma influenza la selettività della fase cristallina di AlN sul substrato 4H-SiC. Infine, il bilayer Al2O3/AlN presenta una qualità dielettrica e di interfaccia migliore rispetto al singolo strato Al2O3, e i nanolaminati Al:Hf mostrano un valore di costante dielettrica modulabile controllando la composizione elementare tramite alternanza di cicli ALD diversi. Sebbene alcuni aspetti legati al comportamento dielettrico, quali l'effetto di successivi trattamenti termici e alcune problematiche di integrazione meritino ulteriori indagini, i risultati preliminari di questa tesi hanno già permesso di evidenziare il potenziale dei dielettrici Al-based ingegnerizzati tramite ALD, aprendo la strada al loro futuro impiego nella tecnologia power-MOSFET su 4H-SiC.
Dielettrici high-κ Al-based per 4H-SiC tramite Atomic Layer Deposition
GALIZIA, BRUNO
2025
Abstract
4H-silicon carbide (4H-SiC) is a wide band gap semiconductor that is gathering increasing attention for applications in high-power and high-temperature electronic devices. In particular, metal-oxide-semiconductor field-effect transistors based on 4H-SiC (4H-SiC MOSFETs) are already commercially available and employs silicon dioxide (SiO2) as gate dielectric. However, the inherent challenges associated with the conventional SiO2/4H-SiC interface, such as high interface state density and suboptimal dielectric properties, necessitate the exploration of alternative gate insulators. The research conducted during the Ph.D. activities summarized in this thesis have been focused on the study of high-κ aluminium-based dielectrics deposited on 4H-SiC via thermal- and plasma enhanced-Atomic Layer Deposition (ALD). In particular, the depositions of aluminium oxide (Al2O3), aluminium nitride (AlN), their stacked combinations and Al2O3/HfO2 mixture have been considered. Structural and chemical characterizations have been performed via in-situ spectroscopic ellipsometry (SE), Atomic Force Microscopy (AFM) and conductive-AFM, high resolution X-ray diffraction (HR-XRD) and transmission electron microscopy (TEM) and scanning-TEM coupled with dispersive X-ray spectroscopy (EDX) and electron energy loss spectroscopy (EELS), providing information on the effect of different deposition processes or substrates during early-stage growth, thickness uniformity, interface structural quality, chemical composition, morphology and crystalline structure of the deposited films. Dielectric properties have been evaluated and correlated with structural features via electrical characterizations, such as capacitance-voltage (C-V) and current voltage (I-V) measurements on metal-insulator-semiconductor (MIS) capacitors fabricated on the deposited samples, or at the nanoscale using C-AFM. Dielectric quality has been evaluated in terms of charges or trap states inside the insulator or at the semiconductor interface, and also intrinsic properties such as dielectric permittivity have been calculated. The findings reveal useful insights on the effects of different ALD process parameters and structural and electrical properties. PE-ALD shows better dielectric conformality than T-ALD in the case of Al2O3 on 4H-SiC, whereas higher oxygen contamination and induced damage has been observed if AlN is used as interface layer between the oxide layer and the 4H-SiC substrate. Plasma pulsing time is demonstrated to influence the crystalline phase selectivity of AlN on 4H-SiC substrate. Finally, Al2O3/AlN bilayer exhibits improved dielectric and interface quality with respect the single Al2O3 layer and Al:Hf nanolaminates showed tuneable dielectric constant value by controlling the composition via different ALD cycles alternation. Although some aspects related to the dielectric behaviour, such as the potential impact of thermal budgets and some integration issues, deserve further investigation, the preliminary achievements of this thesis already enabled to emphasize the potential of ALD-engineered Albased dielectrics, paving the way for their future application in 4H-SiC power MOSFETs technology.File | Dimensione | Formato | |
---|---|---|---|
GALIZIA_BRUNO_TESI_DOTTORATO_finale.pdf
embargo fino al 18/02/2026
Dimensione
8.03 MB
Formato
Adobe PDF
|
8.03 MB | Adobe PDF |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/295662
URN:NBN:IT:UNICT-295662