Metal-based drugs are widely used in therapy and diagnostics for various diseases but face limitations such as instability in plasma, poor cellular uptake, lack of selectivity, side effects and resistance. Similarly, small molecules in cancer treatment suffer from poor water solubility, nonspecific distribution and low therapeutic indices. These challenges can be mitigated by using polymeric nanoparticles, which protect and deliver bioactive coordination complexes to specific sites, such as tumors, where they accumulate via the Enhanced Permeability and Retention effect. Incorporating biomolecules as targeting agents further enhances cellular uptake through receptor-specific interactions, preventing the whole-body distribution of drugs and minimizing off-target side effects. This PhD thesis centers on the synthesis, characterization, and biological evaluation of polymeric nanoparticles with chelating properties for the targeted cancer treatment, aimed at developing novel metal-based drug formulations that are water-soluble and selectively target tumors. Terpyridine and deferoxamine were selected as chelating agents to develop novel metallodrug conjugates. Both the ligands and their metal complexes show antiproliferative activity. The incorporation of terpyridine and deferoxamine in non-toxic and non-immunogenic polymeric scaffolds could enhance both the ligands and their metal complexes bioavailability and biocompatibility. Hence, terpyridine has been conjugated with β- and γ-cyclodextrin polymers, hyaluronic acid, and polyethylene glycol to enhance its water solubility and thereby its biocompatibility. This approach allowed the exploration of terpyridine coordination chemistry in aqueous solutions. The chelating properties of polymeric conjugates were investigated to better understand how to manipulate terpyridine coordination chemistry and consequently how to customize terpyridine-based nanoparticles. Indeed, the nanoparticles above were then decorated via coordination chemistry using diverse terpyridine derivatives. For this purpose, a series of terpyridine functionalized with biomolecules have been synthesized. Biotin, glucose, trehalose, galactose, and tocopherol have been chosen as targeting units, to enhance the cellular uptake with specific receptors and to increase water solubility. Biotin functionalization proved to be a successful strategy for improving the antiproliferative properties of nanoparticles. The metal complexes were prepared using mainly biogenic metal ions, such as Cu2+ and Fe2+. In some cases, Zn2+ and Pt2+ were also used. In most cases, Cu2+-containing nanoparticles displayed the highest efficacy in inhibiting cancer cells, often outperforming well-known drugs such as doxorubicin, cisplatin or temozolomide. The cytotoxicity of terpyridine bioconjugates and their metal complexes has also been tested in vitro to compare their properties to those of terpyridine-based nanoparticles and highlight the advantages of the conjugation. Deferoxamine-polymer conjugate, exploiting a cross-linked β-cyclodextrin polymer, has also been synthesized. Deferoxamine exhibits a high affinity toward Fe3+. The deferoxamine-based nanoparticles here reported showed iron-chelating ability comparable with free deferoxamine. Polymeric deferoxamine displayed significant tumor growth suppression compared with the free ligand and also cisplatin in some cell lines. Overall, these polymeric conjugates have great potential as therapeutic agents in the treatment of cancer. The synthesized polymeric nanoparticles provide novel metallodrug formulations with enhanced solubility, improved biocompatibility, targeting capabilities, and increased therapeutic effectiveness.
I farmaci a base di metalli sono ampiamente utilizzati in terapia e diagnostica per varie malattie, ma presentano limitazioni come instabilità nel plasma, scarsa captazione cellulare, mancanza di selettività, effetti collaterali e resistenza. Allo stesso modo, le piccole molecole utilizzate nel trattamento del cancro soffrono di scarsa solubilità in acqua, distribuzione aspecifica e indici terapeutici ridotti. Queste sfide possono essere mitigate mediante l'uso di nanoparticelle polimeriche, che proteggono e trasportano complessi di coordinazione bioattivi verso siti specifici, come i tumori, dove si accumulano grazie all'effetto di permeabilità e ritenzione aumentata (Enhanced Permeability and Retention, EPR). L’incorporazione di biomolecole come agenti di targeting migliora ulteriormente la captazione cellulare attraverso interazioni recettore-specifiche, prevenendo la distribuzione sistemica dei farmaci e minimizzando gli effetti collaterali off-target. Questa tesi di dottorato si focalizza sulla sintesi, caratterizzazione e valutazione biologica di nanoparticelle polimeriche con proprietà chelanti per il trattamento mirato del cancro, con l’obiettivo di sviluppare nuove formulazioni di farmaci a base di metalli che siano solubili in acqua e capaci di colpire selettivamente i tumori. Il terpidile e la deferoxamina sono stati selezionati come agenti chelanti per sviluppare nuovi coniugati per applicazioni biomediche. Sia i leganti che i loro complessi metallici mostrano attività antiproliferativa. L’incorporazione del terpiridile e della deferoxamina in matrici polimeriche non tossiche e non immunogeniche potrebbe migliorare sia la biodisponibilità che la biocompatibilità di tali leganti e dei loro complessi metallici. Pertanto, il terpiridile è stato coniugato con polimeri di β- e γ-ciclodestrine, acido ialuronico e polietilenglicole per migliorarne la solubilità in acqua e, di conseguenza, la biocompatibilità. Questo approccio ha permesso di esplorare la chimica di coordinazione del terpiridile in soluzioni acquose. Le proprietà chelanti dei coniugati polimerici sono state studiate per comprendere meglio come manipolare la chimica di coordinazione del terpiridile e, di conseguenza, come personalizzare le nanoparticelle a base di terpiridile. Successivamente, le nanoparticelle sono state decorate mediante chimica di coordinazione utilizzando diversi derivati della terpiridile. A tal fine, è stata sintetizzata una serie di derivati della terpiridile funzionalizzati con biomolecole. Biotina, glucosio, trealosio, galattosio e tocoferolo sono stati scelti come unità di targeting per migliorare la captazione cellulare attraverso recettori specifici e aumentare la solubilità in acqua. La funzionalizzazione con biotina si è rivelata una strategia efficace per migliorare le proprietà antiproliferative delle nanoparticelle. I complessi metallici sono stati preparati utilizzando principalmente ioni metallici biogenici, come Cu²⁺ e Fe²⁺. In alcuni casi, sono stati utilizzati anche Zn²⁺ e Pt²⁺. Nella maggior parte dei casi, le nanoparticelle contenenti Cu²⁺ hanno mostrato migliore efficacia nell'inibire le cellule tumorali, spesso con risultati migliori di farmaci noti come doxorubicina, cisplatino o temozolomide. La citotossicità dei bioconiugati a base di terpiridile e dei loro complessi metallici è stata inoltre testata in vitro per confrontare le loro proprietà con quelle delle nanoparticelle a base di terpiridile e evidenziare i vantaggi della coniugazione. È stato anche sintetizzato un coniugato polimerico a base di deferoxamina, sfruttando un polimeroreticolato di β-ciclodestrina . La deferoxamina presenta un’elevata affinità verso il Fe³⁺. Le nanoparticelle a base di deferoxamina qui riportate hanno mostrato una capacità di chelare il ferro comparabile a quella della deferoxamina libera. La deferoxamina polimerica ha mostrato una significativa soppressione della crescita tumorale rispetto al legante libero e, in alcune linee cellulari, anche rispetto al cisplatino. In sintesi, questi coniugati polimerici hanno un grande potenziale come agenti terapeutici per il trattamento del cancro. Le nanoparticelle polimeriche sintetizzate offrono nuove formulazioni per la terapia tumorale con solubilità migliorata, maggiore biocompatibilità, capacità di targeting e una maggiore efficacia terapeutica.
Polymeric nanoparticles with chelating properties for biomedical applications [Nanoparticelle polimeriche con proprietà chelanti per applicazioni biomediche]
PANEBIANCO, ROBERTA
2025
Abstract
Metal-based drugs are widely used in therapy and diagnostics for various diseases but face limitations such as instability in plasma, poor cellular uptake, lack of selectivity, side effects and resistance. Similarly, small molecules in cancer treatment suffer from poor water solubility, nonspecific distribution and low therapeutic indices. These challenges can be mitigated by using polymeric nanoparticles, which protect and deliver bioactive coordination complexes to specific sites, such as tumors, where they accumulate via the Enhanced Permeability and Retention effect. Incorporating biomolecules as targeting agents further enhances cellular uptake through receptor-specific interactions, preventing the whole-body distribution of drugs and minimizing off-target side effects. This PhD thesis centers on the synthesis, characterization, and biological evaluation of polymeric nanoparticles with chelating properties for the targeted cancer treatment, aimed at developing novel metal-based drug formulations that are water-soluble and selectively target tumors. Terpyridine and deferoxamine were selected as chelating agents to develop novel metallodrug conjugates. Both the ligands and their metal complexes show antiproliferative activity. The incorporation of terpyridine and deferoxamine in non-toxic and non-immunogenic polymeric scaffolds could enhance both the ligands and their metal complexes bioavailability and biocompatibility. Hence, terpyridine has been conjugated with β- and γ-cyclodextrin polymers, hyaluronic acid, and polyethylene glycol to enhance its water solubility and thereby its biocompatibility. This approach allowed the exploration of terpyridine coordination chemistry in aqueous solutions. The chelating properties of polymeric conjugates were investigated to better understand how to manipulate terpyridine coordination chemistry and consequently how to customize terpyridine-based nanoparticles. Indeed, the nanoparticles above were then decorated via coordination chemistry using diverse terpyridine derivatives. For this purpose, a series of terpyridine functionalized with biomolecules have been synthesized. Biotin, glucose, trehalose, galactose, and tocopherol have been chosen as targeting units, to enhance the cellular uptake with specific receptors and to increase water solubility. Biotin functionalization proved to be a successful strategy for improving the antiproliferative properties of nanoparticles. The metal complexes were prepared using mainly biogenic metal ions, such as Cu2+ and Fe2+. In some cases, Zn2+ and Pt2+ were also used. In most cases, Cu2+-containing nanoparticles displayed the highest efficacy in inhibiting cancer cells, often outperforming well-known drugs such as doxorubicin, cisplatin or temozolomide. The cytotoxicity of terpyridine bioconjugates and their metal complexes has also been tested in vitro to compare their properties to those of terpyridine-based nanoparticles and highlight the advantages of the conjugation. Deferoxamine-polymer conjugate, exploiting a cross-linked β-cyclodextrin polymer, has also been synthesized. Deferoxamine exhibits a high affinity toward Fe3+. The deferoxamine-based nanoparticles here reported showed iron-chelating ability comparable with free deferoxamine. Polymeric deferoxamine displayed significant tumor growth suppression compared with the free ligand and also cisplatin in some cell lines. Overall, these polymeric conjugates have great potential as therapeutic agents in the treatment of cancer. The synthesized polymeric nanoparticles provide novel metallodrug formulations with enhanced solubility, improved biocompatibility, targeting capabilities, and increased therapeutic effectiveness.File | Dimensione | Formato | |
---|---|---|---|
PhD Thesis_Roberta Panebianco.pdf
accesso aperto
Dimensione
12.07 MB
Formato
Adobe PDF
|
12.07 MB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/295664
URN:NBN:IT:UNICT-295664