This PhD thesis is focused on the production, characterization, and application of nanostructured MOCVD metal oxides films as electrocatalysts for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). These reactions are critical for water splitting, a key process for producing green hydrogen, a crucial energy vector and a clean and sustainable alternative to fossil fuels. Therefore, the urgent global need to reduce carbon emissions, and the role of renewable energy technologies in the mitigation of the effects of climate change have driven this research. In addition, the research has been devoted to the syntheses, characterization and development of new single source precursors for the MOCVD of nanostructured complex oxides. Two novel 3d-4f heterobimetallic complexes, LaNi(hfa)5·tetraglyme and [DyCu(hfa)3(CH3COO)2·tmeda]2, were synthesized and characterized. The thermal and structural properties of these complexes were carefully studied to assess their suitability as potential single-source precursors for MOCVD applications. The depositions, employing these compounds as single source precursors, produced mixed oxide films of lanthanum-nickel and dysprosium-copper oxides, demonstrating the suitability of these novel precursors in metal oxides thin films depositions. Other heterobimetallic complexes RE-Co (RE= Y, Dy and Eu) have been synthesized and characterized in function of their magnetic and luminescent properties. In regard to hydrogen production processes, various materials have been studied in form of highly nanostructured films deposited on Ni-foam substrates through MOCVD processes. MOCVD was applied for the deposition of cobalt oxide (CoO and Co3O4) films on silicon Si (100) and Ni-foam substrates. Cobalt oxide films deposited on Ni-foam exhibited significantly reduced overpotentials for the hydrogen production, demonstrating their potential as effective electrocatalysts for HER. The study highlighted the importance of optimizing deposition parameters, such as temperature, time, and substrate interaction to control the phase, morphology, and thickness of the films. The interaction between cobalt oxide and the Ni-foam substrate was found to influence the phase obtainment, demonstrating the important role of the substrate in MOCVD applications. Moreover, having been reported that the spinel ferrites are promising materials for water splitting, part of the research has focused on application of MOCVD to the deposition of spinel ferrite films (MFe2O4, M = Ni, Co, Zn) on various substrates, including Si (100), MgO (100), and Ni-foam. The results demonstrated the versatility of MOCVD in producing nanostructured films with diverse morphologies, depending on the substrate used. Indeed, oriented films were obtained on single crystal MgO (100), while polycrystalline, randomly distributed grains of spinel ferrites were obtained on Si (100) and Ni-foam. The spinel ferrite films were tested as electrocatalysts for hydrogen evolution reaction and oxygen evolution reaction through Linear Sweep Voltammetry (LSV), Electrochemical Impedance Spectroscopy (EIS) and multiple Cyclic voltammetry (mCVs) measurements. From the results of these electrochemical measurements, it has been found that the nickel oxide, which is formed due to the partial oxidation of the substrate during the depositions at high temperature, is detrimental for the electrocatalytic features of these systems. Reducing the deposition temperature, all the spinel ferrite films obtained show good electrocatalytic performance with in particular NiFe2O4 films presenting the better performance for HER, and ZnFe2O4 films showing the better performances for OER. Moreover, the enhanced electrochemically active surface area (ECSA) of the films, combined with their nanostructured nature, contributed to their improved catalytic performances. These resultssuggest that different spinel ferrites can be optimized for specific water splitting reactions, providing a cost-effective alternative to noble metal-based electrocatalysts.
Questa tesi di dottorato si concentra sulla produzione, caratterizzazione e applicazione di film di ossidi metallici nanostrutturati mediante MOCVD (Metal Organic Chemical Vapor Deposition) come elettrocatalizzatori per le reazioni di evoluzione dell’idrogeno (HER) e dell’ossigeno (OER). Queste reazioni sono fondamentali per lo splitting dell'acqua, un processo chiave per la produzione di idrogeno verde, una risorsa energetica sostenibile e alternativa ai combustibili fossili. La necessità globale di ridurre le emissioni di carbonio e l'importanza delle tecnologie energetiche rinnovabili hanno guidato questa ricerca. La ricerca ha incluso la sintesi, caratterizzazione e sviluppo di nuovi precursori a sorgente singola per la deposizione MOCVD di ossidi complessi nanostrutturati. Sono stati sintetizzati e caratterizzati due nuovi complessi eterobimetallici 3d-4f, LaNi(hfa)5·tetraglyme e [DyCu(hfa)3(CH3COO)2·tmeda]2. Le proprietà termiche e strutturali di questi complessi sono state analizzate per valutarne l’idoneità come precursori a sorgente singola per applicazioni MOCVD. Le deposizioni effettuate con questi composti hanno prodotto film di ossidi misti di nichel-lantanio e rame-disprosio, dimostrando l'idoneità dei nuovi precursori per la deposizione di film sottili di ossidi metallici. Sono stati inoltre sintetizzati complessi eterobimetallici RE-Co (RE = Y, Dy, Eu) caratterizzati per le loro proprietà magnetiche e luminescenti. Per quanto riguarda i processi di produzione dell’idrogeno, sono stati studiati materiali sotto forma di film altamente nanostrutturati depositati su substrati di Ni-foam tramite MOCVD. Sono stati depositati film di ossido di cobalto (CoO e Co3O4) su substrati di silicio Si(100) e Ni-foam. I film di ossido di cobalto su Ni-foam hanno mostrato una significativa riduzione degli overpotenziali per la produzione di idrogeno, evidenziando il loro potenziale come elettrocatalizzatori efficaci per HER. Lo studio ha sottolineato l'importanza di ottimizzare i parametri di deposizione, come temperatura, tempo e interazione con il substrato, per controllare fase, morfologia e spessore dei film. È stato osservato che l'interazione tra ossido di cobalto e il substrato di Ni-foam influenza la fase ottenuta, dimostrando il ruolo fondamentale del substrato nelle applicazioni MOCVD. Poiché le ferriti spinello sono materiali promettenti per lo splitting dell’acqua, parte della ricerca si è concentrata sull’applicazione del MOCVD per la deposizione di film di ferriti spinello (MFe2O4, M = Ni, Co, Zn) su vari substrati, inclusi Si(100), MgO(100) e Ni-foam. I risultati hanno dimostrato la versatilità del MOCVD nella produzione di film nanostrutturati con morfologie diverse a seconda del substrato utilizzato. Film orientati sono stati ottenuti su substrato single crystal MgO(100), mentre grani policristallini e distribuiti casualmente sono stati ottenuti su Si(100) e Ni-foam. I film di ferriti spinelle sono stati testati come elettrocatalizzatori per HER e OER tramite tecniche come Linear Sweep Voltammetry (LSV), Electrochemical Impedance Spectroscopy (EIS) e misure di Ciclovoltammetria Multipla (mCVs). Dai risultati è emerso che l’ossido di nichel formatosi a causa dell’ossidazione parziale del substrato durante le deposizioni ad alta temperatura è dannoso per le caratteristiche elettrocatalitiche di questi sistemi. Riducendo la temperatura di deposizione, tutti i film di ferriti spinello ottenuti hanno mostrato buone prestazioni elettrocatalitiche, in particolare i film di NiFe2O4 per HER e quelli di ZnFe2O4 per OER. Inoltre, la maggiore superficie elettrochimicamente attiva (ECSA) dei film, combinata con la loro natura nanostrutturata, ha contribuito al miglioramento delle prestazioni catalitiche. Questi risultati suggeriscono che diverse ferriti spinelle possono essere ottimizzate per reazioni specifiche di splitting dell’acqua, fornendo un’alternativa economica agli elettrocatalizzatori basati su metalli nobili.
Synthesis of novel multifunctional material for H₂ production [Sintesi di nuovi materiali multifunzionali per la produzione di idrogeno]
BOMBACI, MATTEO
2025
Abstract
This PhD thesis is focused on the production, characterization, and application of nanostructured MOCVD metal oxides films as electrocatalysts for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). These reactions are critical for water splitting, a key process for producing green hydrogen, a crucial energy vector and a clean and sustainable alternative to fossil fuels. Therefore, the urgent global need to reduce carbon emissions, and the role of renewable energy technologies in the mitigation of the effects of climate change have driven this research. In addition, the research has been devoted to the syntheses, characterization and development of new single source precursors for the MOCVD of nanostructured complex oxides. Two novel 3d-4f heterobimetallic complexes, LaNi(hfa)5·tetraglyme and [DyCu(hfa)3(CH3COO)2·tmeda]2, were synthesized and characterized. The thermal and structural properties of these complexes were carefully studied to assess their suitability as potential single-source precursors for MOCVD applications. The depositions, employing these compounds as single source precursors, produced mixed oxide films of lanthanum-nickel and dysprosium-copper oxides, demonstrating the suitability of these novel precursors in metal oxides thin films depositions. Other heterobimetallic complexes RE-Co (RE= Y, Dy and Eu) have been synthesized and characterized in function of their magnetic and luminescent properties. In regard to hydrogen production processes, various materials have been studied in form of highly nanostructured films deposited on Ni-foam substrates through MOCVD processes. MOCVD was applied for the deposition of cobalt oxide (CoO and Co3O4) films on silicon Si (100) and Ni-foam substrates. Cobalt oxide films deposited on Ni-foam exhibited significantly reduced overpotentials for the hydrogen production, demonstrating their potential as effective electrocatalysts for HER. The study highlighted the importance of optimizing deposition parameters, such as temperature, time, and substrate interaction to control the phase, morphology, and thickness of the films. The interaction between cobalt oxide and the Ni-foam substrate was found to influence the phase obtainment, demonstrating the important role of the substrate in MOCVD applications. Moreover, having been reported that the spinel ferrites are promising materials for water splitting, part of the research has focused on application of MOCVD to the deposition of spinel ferrite films (MFe2O4, M = Ni, Co, Zn) on various substrates, including Si (100), MgO (100), and Ni-foam. The results demonstrated the versatility of MOCVD in producing nanostructured films with diverse morphologies, depending on the substrate used. Indeed, oriented films were obtained on single crystal MgO (100), while polycrystalline, randomly distributed grains of spinel ferrites were obtained on Si (100) and Ni-foam. The spinel ferrite films were tested as electrocatalysts for hydrogen evolution reaction and oxygen evolution reaction through Linear Sweep Voltammetry (LSV), Electrochemical Impedance Spectroscopy (EIS) and multiple Cyclic voltammetry (mCVs) measurements. From the results of these electrochemical measurements, it has been found that the nickel oxide, which is formed due to the partial oxidation of the substrate during the depositions at high temperature, is detrimental for the electrocatalytic features of these systems. Reducing the deposition temperature, all the spinel ferrite films obtained show good electrocatalytic performance with in particular NiFe2O4 films presenting the better performance for HER, and ZnFe2O4 films showing the better performances for OER. Moreover, the enhanced electrochemically active surface area (ECSA) of the films, combined with their nanostructured nature, contributed to their improved catalytic performances. These resultssuggest that different spinel ferrites can be optimized for specific water splitting reactions, providing a cost-effective alternative to noble metal-based electrocatalysts.File | Dimensione | Formato | |
---|---|---|---|
PhD_Thesis_Matteo_Bombaci.pdf
embargo fino al 18/02/2026
Dimensione
9.81 MB
Formato
Adobe PDF
|
9.81 MB | Adobe PDF |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/295671
URN:NBN:IT:UNICT-295671