Perovskites have emerged as one of the most promising materials for next-generation photovoltaic technologies, because of their high-power conversion efficiencies, low production costs, and tunable properties. Among the perovskites, the All-inorganic Halide Perovskites (AIHPs) have attracted enormous interest due to their stability and their optoelectronic characteristics that make them strong candidates for the fabrication of Perovskite Solar Cells (PSCs). However, to achieve their full potential in commercial applications, PSCs must overcome obstacles like the environmental impact of traditional synthetic methods and the deterioration of photovoltaic performance due to the presence of defects on the perovskite surface. The first part of this thesis investigates the development of novel synthesis processes and deposition techniques for AIHPs, to overcome the issue of the use of potentially toxic solvent like DMF and DMSO on the perovskite synthesis. Initially, this work reports the synthesis of new lead-based precursors, β-diketonate glyme adducts “Pb(hfa)2 ∙ glyme”. These precursors show unique properties such as solubility in common organic solvent, making them suitable for more environmentally friendly perovskite synthesis. Subsequently, the thesis reports the employment of the new precursors in a one-pot, green, solution-based CsPbX3 synthesis using ethanol as a solvent. This strategy offers a viable alternative to the solvents commonly used in perovskite synthesis. The results demonstrate the successful production of high-quality CsPbBr3 perovskite crystals and films deposited on different substrates, revealing excellent stability and optical properties suitable for a wide range of optoelectronic applications. Additionally, the study explores the synthesis of Cs4PbBr6/CsPbBr3 composites, which exhibited strong photoluminescence, making them ideal candidates for light-emitting devices. Furthermore, the research extends to the synthesis of CsPbI3 perovskite, in form of 1D nanoribbons, investigating their reversible phase transitions, the optical properties and their implications for device fabrication. Subsequently, this work introduces a new post-treatment passivation technique for PSCs using liquid β-diketonate Hhfa, to reduce the defects on the perovskite surface. This facile and rapid approach shows an enhancement of the photovoltaic performance of PSCs and monolithic tandem Si/Perovskite solar cells. This activity has been performed during the period spent at CEA-LITEN (at INES Institut National de l'Energie Solaire, Le Bourget-du-Lac, France). The final chapter of this thesis describes a laser scribing strategy for the fabrication of Half-Cells from Silicon Heterojunction Solar Cells (SHJ), in order to reduce the power losses of the cells and consequently the cell-to-module (CTM) losses. This research has been carried out during period spent in the industry (3SUN Enel Green Power group, Catania, Italy).
Le perovskiti si sono affermate come uno dei materiali più promettenti per le tecnologie fotovoltaiche di nuova generazione, grazie alle loro elevate efficienze di conversione, ai bassi costi di produzione e alle proprietà modulabili. Tra queste, le perovskiti alogenate completamente inorganiche (AIHPs) hanno suscitato grande interesse per la loro stabilità e le caratteristiche optoelettroniche, che le rendono forti candidate per la realizzazione di celle solari a perovskite (PSC). Tuttavia, per sfruttare appieno il loro potenziale nelle applicazioni commerciali, le PSC devono superare ostacoli come l'impatto ambientale dei metodi sintetici tradizionali e il deterioramento delle prestazioni fotovoltaiche dovuto alla presenza di difetti sulla superficie della perovskite. La prima parte di questa tesi si concentra sullo sviluppo di nuovi processi di sintesi e tecniche di deposizione per le AIHPs, al fine di risolvere il problema dell'uso di solventi potenzialmente tossici come DMF e DMSO nella sintesi delle perovskiti. Inizialmente, il lavoro presenta la sintesi di nuovi precursori a base di piombo, gli addotti β-dichetonati con polieteri “Pb(hfa)2 ∙ glyme”. Questi precursori mostrano proprietà uniche, come la solubilità in solventi organici comuni, rendendoli idonei a una sintesi più ecologica delle perovskiti. Successivamente, la tesi descrive l'impiego di questi nuovi precursori in una sintesi in soluzione, green e one-pot di CsPbX3, utilizzando etanolo come solvente. Questa strategia rappresenta un'alternativa valida ai solventi comunemente usati nella sintesi delle perovskiti. I risultati dimostrano la produzione di cristalli e film di perovskite CsPbBr3 di alta qualità, depositati su diversi substrati, con eccellenti proprietà ottiche e stabilità, rendendoli adatti a una vasta gamma di applicazioni optoelettroniche. Inoltre, lo studio esplora la sintesi di compositi Cs4PbBr6/CsPbBr3, che mostrano una forte fotoluminescenza, risultando candidati ideali per dispositivi a emissione luminosa. La ricerca si estende anche alla sintesi di perovskite CsPbI3 in forma di nanoribbon unidimensionali, indagando le loro transizioni di fase reversibili, le proprietà ottiche e le implicazioni per la fabbricazione di dispositivi. Successivamente, viene introdotta una nuova tecnica di passivazione post-trattamento per le PSC, utilizzando il β-dichetonato liquido Hhfa, per ridurre i difetti sulla superficie delle perovskiti. Questo approccio semplice e rapido dimostra un miglioramento delle prestazioni fotovoltaiche delle PSC e delle celle solari tandem monolitiche Si/Perovskite. Questa attività è stata svolta durante il periodo presso il CEA-LITEN (presso l’INES Institut National de l’Energie Solaire, Le Bourget-du-Lac, Francia). L'ultimo capitolo della tesi descrive una strategia di incisione laser per la fabbricazione di Half-Cells a partire da celle solari Heterojunction in silicio (SHJ), al fine di ridurre le perdite di potenza delle celle e, di conseguenza, le perdite cell-to-module (CTM). Questa ricerca è stata condotta durante il periodo trascorso nell'industria (3SUN Enel Green Power group, Catania, Italia).
Development of new synthesis processes and deposition of Perovskites for use in photovoltaic applications in coupling with monocrystalline silicon substrates [Sviluppo di nuovi processi di sintesi e deposizione di perovskiti per l'uso in applicazioni fotovoltaiche in accoppiamento con substrati di silicio monocristallino]
SIRNA, LORENZO
2025
Abstract
Perovskites have emerged as one of the most promising materials for next-generation photovoltaic technologies, because of their high-power conversion efficiencies, low production costs, and tunable properties. Among the perovskites, the All-inorganic Halide Perovskites (AIHPs) have attracted enormous interest due to their stability and their optoelectronic characteristics that make them strong candidates for the fabrication of Perovskite Solar Cells (PSCs). However, to achieve their full potential in commercial applications, PSCs must overcome obstacles like the environmental impact of traditional synthetic methods and the deterioration of photovoltaic performance due to the presence of defects on the perovskite surface. The first part of this thesis investigates the development of novel synthesis processes and deposition techniques for AIHPs, to overcome the issue of the use of potentially toxic solvent like DMF and DMSO on the perovskite synthesis. Initially, this work reports the synthesis of new lead-based precursors, β-diketonate glyme adducts “Pb(hfa)2 ∙ glyme”. These precursors show unique properties such as solubility in common organic solvent, making them suitable for more environmentally friendly perovskite synthesis. Subsequently, the thesis reports the employment of the new precursors in a one-pot, green, solution-based CsPbX3 synthesis using ethanol as a solvent. This strategy offers a viable alternative to the solvents commonly used in perovskite synthesis. The results demonstrate the successful production of high-quality CsPbBr3 perovskite crystals and films deposited on different substrates, revealing excellent stability and optical properties suitable for a wide range of optoelectronic applications. Additionally, the study explores the synthesis of Cs4PbBr6/CsPbBr3 composites, which exhibited strong photoluminescence, making them ideal candidates for light-emitting devices. Furthermore, the research extends to the synthesis of CsPbI3 perovskite, in form of 1D nanoribbons, investigating their reversible phase transitions, the optical properties and their implications for device fabrication. Subsequently, this work introduces a new post-treatment passivation technique for PSCs using liquid β-diketonate Hhfa, to reduce the defects on the perovskite surface. This facile and rapid approach shows an enhancement of the photovoltaic performance of PSCs and monolithic tandem Si/Perovskite solar cells. This activity has been performed during the period spent at CEA-LITEN (at INES Institut National de l'Energie Solaire, Le Bourget-du-Lac, France). The final chapter of this thesis describes a laser scribing strategy for the fabrication of Half-Cells from Silicon Heterojunction Solar Cells (SHJ), in order to reduce the power losses of the cells and consequently the cell-to-module (CTM) losses. This research has been carried out during period spent in the industry (3SUN Enel Green Power group, Catania, Italy).File | Dimensione | Formato | |
---|---|---|---|
PhD Thesis_Lorenzo Sirna.pdf
embargo fino al 18/02/2026
Dimensione
11.09 MB
Formato
Adobe PDF
|
11.09 MB | Adobe PDF |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/295673
URN:NBN:IT:UNICT-295673