Stromboli, located in the southern Tyrrhenian Sea, is a well-known active volcano renowned for its characteristic Strombolian eruptions, characterized by low to moderate energy explosions and lava flows. This study delves into the early eruptive history of Stromboli, focusing on the Paleostromboli I, II, and III epochs (85–34 ka), which were marked by more violent and explosive activity compared to modern-day eruptions. During these epochs, numerous explosive events were associated with sub-Plinian eruptions, some of which resulted in significant material dispersal, such as the La Petrazza eruption. Understanding these events, and the underlying conditions that lead to such violent eruptions, is key to assessing the current volcanic risks faced by Stromboli and its surrounding areas. A particular focus of this study is the La Petrazza Formation (Paleostromboli I) and the Scari Formation (Paleostromboli III), two key pyroclastic successions that have shaped the explosive character of the volcano. The La Petrazza Formation is attributed to a sub-Plinian eruption, marked by the widespread distribution of deposits in regions like Capo Milazzo, Lago Grande di Monticchio, and marine tephra records in the Tyrrhenian Sea. The Scari Formation, on the other hand, represents the first hydromagmatic eruption in Stromboli’s history, providing an essential understanding of the triggering mechanisms behind such explosive events. In addition, the L’Omo Formation, which is characterized by calc-alkaline lava, offers a distinct perspective on Stromboli's magmatic system, containing petrological and chemical characteristics that are crucial for unraveling the complex volcanic processes at play during this period. The research project aims to enhance our understanding of Stromboli's early eruptive history and the conditions that contributed to its explosive activity. Through a combination of petrological, geochemical, and field-based analyses, this study investigates the eruption dynamics, magma evolution, and the influence of regional tectonic processes on Stromboli’s volcanic behavior. This is essential for identifying potential links between Stromboli’s long-term eruptive cycles and the volcanic-tectonic processes that may have influenced the shifts in eruptive style observed at the island. The research objectives include the reconstruction of pre- and syn-eruptive dynamics, the investigation of magmatological evolution, and the assessment of regional tectonic influences on the magmatic stratigraphy, with a specific focus on sector collapses that may have influenced the transition from closed conduit to open conduit behavior. This study employs a range of advanced analytical techniques, including X-ray fluorescence (XRF) and inductively coupled plasma mass spectrometry (ICP-MS) for whole rock analysis, electron probe microanalysis (EPMA-WDS) for mineral chemistry and core-to-rim compositional profiles of plagioclase crystals, scanning electron microscopy (SEM-EDS) to investigate eruptive mechanisms, and thermobarometric models to estimate the depths of crystallization and magmatic ascent. These methodologies are applied to all relevant outcropping formations from the Paleostromboli I-III epochs. The results of this study indicate that the volcanic activity during the Paleostromboli I-III epochs was far more energetic than modern eruptions at Stromboli. The La Petrazza Formation (PSTI), for instance, was associated with massive Vulcanian to sub-Plinian eruptions, characterized by sustained eruptive columns, pyroclastic density currents, far surpassing the current paroxysms in terms of magnitude. Thermobarometric and mineralogical data suggest that these eruptions originated from a polybaric system, extending beyond 14 km in depth, and were influenced by deep magma recharge and decompression events. The presence of amphibole phenocrysts in equilibrium at depths of 5–16 km points to crystallization conditions that may have increased the water content in the magma, possibly triggering more explosive eruptions. The study of the L’Omo Formation (PSTII) and the Middle and Upper Vallone di Rina formations, reveal the complex interactions between deep and shallow magma reservoirs and demonstrates the role of gas-flushing, oxidation, and magma mixing in shaping eruption triggers and modifying magma chemistry. These findings underscore the importance of volatile-induced differentiation and suggest that gas-flushing played a critical role in triggering eruptions during the Paleostromboli II-III periods. The analysis of the Scari Formation (PSTIII) highlights the hydromagmatic nature of some of Stromboli’s explosive events, showing evidence of magma-water interaction and fine-grained ash production. This is evidenced by distinctive morphological features, suggesting that external water interacted with the erupting magma during a major collapse event, further complicating the eruption dynamics. Thermobarometric and mineralogical investigations indicate a polybaric system extending beyond 15-50 km in depth, consistent with high-pressure crystallization in the deeper portions of the plumbing system. In conclusion, this PhD thesis provides significant insights into the volcanic history of Stromboli, particularly the Paleostromboli I-III epochs, shedding light on the more energetic and violent eruption styles that characterized the island’s early volcanic activity. The findings underscore the need for a multidisciplinary approach to understanding Stromboli's long-term volcanic behavior, which is essential for assessing current volcanic risks, developing eruption forecasting models, and enhancing emergency management strategies. By investigating past explosive events and the magmatic processes driving them, this research contributes to a more comprehensive understanding of Stromboli’s eruptive dynamics and the geological factors that continue to shape this active volcanic island.
Stromboli, situato nel Mar Tirreno meridionale, è un noto vulcano attivo rinomato per le sue caratteristiche eruzioni stromboliane, caratterizzate da esplosioni di bassa e moderata energia e flussi di lava. Questo studio esplora la storia eruttiva iniziale di Stromboli, concentrandosi sugli episodi Paleostromboli I, II e III (85-34 ka), che sono stati segnati da un'attività più violenta ed esplosiva rispetto alle eruzioni moderne. Durante queste Epoche Eruttive, numerosi eventi esplosivi sono stati associati ad eruzioni sub-Pliniane, alcune delle quali hanno comportato una significativa dispersione di materiale, come l'eruzione di La Petrazza. Comprendere questi eventi e le condizioni che portano ad eruzioni così violente è fondamentale per valutare i rischi vulcanici attuali a Stromboli e nelle aree circostanti. Un particolare focus di questo studio è la Formazione di La Petrazza (Paleostromboli I) e la Formazione di Scari (Paleostromboli III), due successioni piroclastiche chiave che hanno definito il carattere esplosivo del vulcano. La Formazione di La Petrazza è attribuita a un'eruzione sub-Pliniana, segnata dalla distribuzione diffusa dei depositi in aree come Capo Milazzo, il Lago Grande di Monticchio e nei tefra marini del Mar Tirreno. La Formazione di Scari, invece, rappresenta la prima eruzione idromagmatica nella storia eruttiva di Stromboli, rivestendo un ruolo essenziale per la comprensione dei meccanismi di innesco dietro tali eventi esplosivi. Inoltre, la Formazione de L’Omo, caratterizzata da lava calcalcalina, offre una prospettiva peculiare sul sistema magmatico di Stromboli, essendo caratterizzata da tratti petrologici e geochimici cruciali per la definizione dei complessi processi vulcanici in atto durante questo periodo. Il Progetto di Ricerca mira a migliorare la nostra comprensione della storia eruttiva iniziale di Stromboli e delle condizioni che hanno contribuito alla sua attività esplosiva. Attraverso una combinazione di analisi petrologiche, geochimiche e sul campo, questo studio indaga le dinamiche eruttive, l’evoluzione magmatica e l’eventuale influenza dei processi tettonici regionali sul comportamento vulcanico di Stromboli, con un focus particolare sui collassi di settore che potrebbero aver influenzato la transizione del sistema magmatico da una condizione a condotto chiuso a una a condotto aperto. Questo ricerca si è avvalsa di una serie di tecniche analitiche avanzate, tra cui la tecnica della fluorescenza dei raggi X (XRF) e spettrometria di massa con plasma accoppiato induttivamente (ICP-MS) per l'analisi su roccia totale; microanalisi con microsonda elettronica (EPMA-WDS) per la chimica dei minerali e la realizzazione di profili composizionali nucleo-bordo dei cristalli di plagioclasio e anfibolo per l’applicazione di modelli termobarometrici; microscopia elettronica a scansione (SEM-EDS) per investigare i meccanismi eruttivi. I risultati di questo studio indicano che l'attività vulcanica durante le epoche Paleostromboli I-III è stata molto più energetica rispetto alle eruzioni moderne di Stromboli. Ad esempio, la Formazione di La Petrazza (PSTI) è stata associata ad eruzioni sub-Pliniane, caratterizzate da colonne eruttive sostenute, correnti di densità piroclastiche, superando di gran lunga i parossismi attuali in termini di magnitudo. I dati geobarometrici e mineralogici suggeriscono che queste eruzioni provenissero da un sistema polibarico, estendendosi oltre i 14 km di profondità, influenzate da ricariche profonde di magma e da eventi di decompressione. La presenza di fenocristalli di anfibolo in equilibrio a profondità comprese tra i 5 e i 16 km suggerisce che le condizioni di cristallizzazione possano aver aumentato il contenuto di acqua nel magma, probabilmente innescando eruzioni più esplosive. Lo studio della Formazione de L’Omo (PSTII) e delle formazioni del Vallone di Rina Medio e Superiore rivela le complesse interazioni tra reservoir magmatici profondi e superficiali e dimostra il ruolo di eventi di "gas-flushing", ossidazione e mixing tra magmi nel determinare i fattori di innesco delle eruzioni e nel modificare la chimica del magma. Questi risultati sottolineano l'importanza della differenziazione indotta dai volatili e suggeriscono che il "gas-flushing" abbia svolto un ruolo cruciale nell'innesco di eruzioni durante le epoche Paleostromboli II-III. L'analisi della Formazione di Scari (PSTIII) evidenzia la natura idromagmatica di alcuni eventi esplosivi di Stromboli, mostrando evidenze dell’interazione tra magma. Ciò è testimoniato da caratteristiche morfologiche distintive, suggerendo che l'acqua esterna abbia interagito con il magma durante un grande evento di collasso. Le indagini termobarometriche e mineralogiche indicano un sistema polibarico che si estende da 15 a 50 km di profondità, in linea con la cristallizzazione ad alta pressione nelle porzioni più profonde del plumbing system. In conclusione, questa Tesi di Dottorato fornisce nuove conoscenze e importanti approfondimenti sulla storia vulcanica di Stromboli, in particolare delle Epoche Eruttive Paleostromboli I-III, facendo luce sugli eventi eruttivi più violenti che hanno caratterizzato l'attività vulcanica iniziale dell'isola. I risultati sottolineano la necessità di un approccio multidisciplinare per comprendere il comportamento vulcanico a lungo termine di Stromboli, essenziale per valutare i rischi vulcanici attuali, sviluppare modelli di previsione delle eruzioni e migliorare le strategie di gestione delle emergenze. Indagando gli eventi esplosivi passati e i processi magmatici che li hanno guidati, questa ricerca contribuisce a una comprensione più completa delle dinamiche eruttive di Stromboli e dei fattori geologici che continuano a plasmare questa straordinaria isola vulcanica.
Trigger dynamics, pre-eruptive processes, magmatological evolution and volcano-tectonic implications of the Paleo-Stromboli eruptive epochs [Dinamiche di innesco, processi pre-eruttivi, evoluzione magmatologica e implicazioni vulcanico-tettoniche delle epoche eruttive del Paleo-Stromboli]
MINNITI, MARTA
2025
Abstract
Stromboli, located in the southern Tyrrhenian Sea, is a well-known active volcano renowned for its characteristic Strombolian eruptions, characterized by low to moderate energy explosions and lava flows. This study delves into the early eruptive history of Stromboli, focusing on the Paleostromboli I, II, and III epochs (85–34 ka), which were marked by more violent and explosive activity compared to modern-day eruptions. During these epochs, numerous explosive events were associated with sub-Plinian eruptions, some of which resulted in significant material dispersal, such as the La Petrazza eruption. Understanding these events, and the underlying conditions that lead to such violent eruptions, is key to assessing the current volcanic risks faced by Stromboli and its surrounding areas. A particular focus of this study is the La Petrazza Formation (Paleostromboli I) and the Scari Formation (Paleostromboli III), two key pyroclastic successions that have shaped the explosive character of the volcano. The La Petrazza Formation is attributed to a sub-Plinian eruption, marked by the widespread distribution of deposits in regions like Capo Milazzo, Lago Grande di Monticchio, and marine tephra records in the Tyrrhenian Sea. The Scari Formation, on the other hand, represents the first hydromagmatic eruption in Stromboli’s history, providing an essential understanding of the triggering mechanisms behind such explosive events. In addition, the L’Omo Formation, which is characterized by calc-alkaline lava, offers a distinct perspective on Stromboli's magmatic system, containing petrological and chemical characteristics that are crucial for unraveling the complex volcanic processes at play during this period. The research project aims to enhance our understanding of Stromboli's early eruptive history and the conditions that contributed to its explosive activity. Through a combination of petrological, geochemical, and field-based analyses, this study investigates the eruption dynamics, magma evolution, and the influence of regional tectonic processes on Stromboli’s volcanic behavior. This is essential for identifying potential links between Stromboli’s long-term eruptive cycles and the volcanic-tectonic processes that may have influenced the shifts in eruptive style observed at the island. The research objectives include the reconstruction of pre- and syn-eruptive dynamics, the investigation of magmatological evolution, and the assessment of regional tectonic influences on the magmatic stratigraphy, with a specific focus on sector collapses that may have influenced the transition from closed conduit to open conduit behavior. This study employs a range of advanced analytical techniques, including X-ray fluorescence (XRF) and inductively coupled plasma mass spectrometry (ICP-MS) for whole rock analysis, electron probe microanalysis (EPMA-WDS) for mineral chemistry and core-to-rim compositional profiles of plagioclase crystals, scanning electron microscopy (SEM-EDS) to investigate eruptive mechanisms, and thermobarometric models to estimate the depths of crystallization and magmatic ascent. These methodologies are applied to all relevant outcropping formations from the Paleostromboli I-III epochs. The results of this study indicate that the volcanic activity during the Paleostromboli I-III epochs was far more energetic than modern eruptions at Stromboli. The La Petrazza Formation (PSTI), for instance, was associated with massive Vulcanian to sub-Plinian eruptions, characterized by sustained eruptive columns, pyroclastic density currents, far surpassing the current paroxysms in terms of magnitude. Thermobarometric and mineralogical data suggest that these eruptions originated from a polybaric system, extending beyond 14 km in depth, and were influenced by deep magma recharge and decompression events. The presence of amphibole phenocrysts in equilibrium at depths of 5–16 km points to crystallization conditions that may have increased the water content in the magma, possibly triggering more explosive eruptions. The study of the L’Omo Formation (PSTII) and the Middle and Upper Vallone di Rina formations, reveal the complex interactions between deep and shallow magma reservoirs and demonstrates the role of gas-flushing, oxidation, and magma mixing in shaping eruption triggers and modifying magma chemistry. These findings underscore the importance of volatile-induced differentiation and suggest that gas-flushing played a critical role in triggering eruptions during the Paleostromboli II-III periods. The analysis of the Scari Formation (PSTIII) highlights the hydromagmatic nature of some of Stromboli’s explosive events, showing evidence of magma-water interaction and fine-grained ash production. This is evidenced by distinctive morphological features, suggesting that external water interacted with the erupting magma during a major collapse event, further complicating the eruption dynamics. Thermobarometric and mineralogical investigations indicate a polybaric system extending beyond 15-50 km in depth, consistent with high-pressure crystallization in the deeper portions of the plumbing system. In conclusion, this PhD thesis provides significant insights into the volcanic history of Stromboli, particularly the Paleostromboli I-III epochs, shedding light on the more energetic and violent eruption styles that characterized the island’s early volcanic activity. The findings underscore the need for a multidisciplinary approach to understanding Stromboli's long-term volcanic behavior, which is essential for assessing current volcanic risks, developing eruption forecasting models, and enhancing emergency management strategies. By investigating past explosive events and the magmatic processes driving them, this research contributes to a more comprehensive understanding of Stromboli’s eruptive dynamics and the geological factors that continue to shape this active volcanic island.File | Dimensione | Formato | |
---|---|---|---|
Tesi dottorato_MartaMinniti.pdf
embargo fino al 14/02/2026
Dimensione
17.27 MB
Formato
Adobe PDF
|
17.27 MB | Adobe PDF |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/295676
URN:NBN:IT:UNICT-295676