Ultra fast charging stations (UFC) pose significant challenges to the power grid due to their intermittent high-power demand. This issue is further exacerbated by the increasing integration of renewable energy sources, which introduces additional fluctuations in power availability. One promising approach to mitigating these grid-related challenges is the use of battery energy storage systems (BESSs), which can help smooth power demand, provide peak shaving, and enhance grid stability. However, the integration of BESSs within UFC stations introduces additional complexity, particularly concerning power conversion, control, and system scalability. Current UFC station architectures predominantly rely on conventional solutions concerning the power electronics interface, and require bulky transformers and additional filtering to meet grid power quality requirements. Furthermore, existing topologies necessitate multiple dc-dc converter stages to accommodate different charging voltage levels (e.g., 400V, 800V, or >1kV), further increasing system complexity. To address these limitations, modular multilevel converter (MMC)-based architectures for electric vehicles (EVs) charging stations are investigated in this thesis. MMCs offer several advantages, including lower total harmonic distortion (THD), reduced reliance on bulky transformers, scalability, and enhanced flexibility in integrating multiple power sources. In particular, various converter architectures and control strategies are proposed and analyzed, addressing critical issues such as power quality, grid stability, and system modularity. The key contributions of this research include: • The analysis and comparison of different converter topologies for UFC stations, including fully modular architectures and configurations integrating isolated dc-dc converters. • development of a novel double-star MMC topology for integrating photovoltaic (PV) sources and loads, with applications in green hydrogen production for fuel-cell electric vehicles (FC-EVs). • A study on high-power isolated dc-dc converters leveraging cascaded cells to improve efficiency and reduce reactive power.
Le stazioni di ricarica ultra-rapida pongono notevoli sfide alla rete elettrica a causa di potenze intermittenti ed elevate. L'integrazione di energie rinnovabili nella rete elettrica introduce ulteriori fluttuazioni nella disponibilità di energia. Una delle soluzioni per alleviare lo stress sulla rete elettrica è l’uso dei sistemi di accumulo di energia a batteria, che possono aiutare a livellare la domanda di potenza, fornire il cosiddetto “peak shaving” e migliorare la stabilità della rete. Tuttavia, l’integrazione di sistemi di accumulo nelle stazioni di ricarica introduce ulteriore complessità. Per quanto riguarda l'interfaccia con la rete elettrica, le architetture attuali delle stazioni per ricarica rapida si basano prevalentemente su topologie convenzionali di convertitori elettronici di potenza, richiedendo l'uso di trasformatori e ulteriori filtri per soddisfare i requisiti di distorsione armonica. Inoltre, le topologie esistenti necessitano di più convertitori DC-DC per adattarsi ai diversi livelli di tensione di ricarica (ad esempio, 400V, 800V o oltre 1kV), aumentando ulteriormente la complessità del sistema. Per affrontare queste limitazioni, in questa tesi vengono analizzate e proposte architetture basate su convertitori modulari multilivello per le stazioni di ricarica dei veicoli elettrici. I convertitori multilivello offrono diversi vantaggi, tra cui una distorsione armonica di corrente e tensione inferiore, scalabilità e maggiore flessibilità nell’integrazione di più fonti di energia. In particolare, nella tesi vengono proposte e analizzate varie architetture di convertitori e strategie di controllo. I principali contributi di questa ricerca includono: • L’analisi e il confronto tra diverse topologie di convertitori per stazioni di ricarica rapida, incluse architetture completamente modulari e configurazioni che integrano convertitori DC-DC isolati. • Lo sviluppo di una nuova topologia multilivello per l’integrazione di fonti fotovoltaiche e carichi, con applicazioni nella produzione di idrogeno verde per veicoli elettrici a celle a combustibile. • Uno studio su convertitori DC-DC isolati ad alta potenza che sfruttano celle in cascata per migliorare l’efficienza e ridurre la potenza reattiva.
Modular Multilevel Converters Applications for EV Charging Stations
Edoardo, Ferri
2025
Abstract
Ultra fast charging stations (UFC) pose significant challenges to the power grid due to their intermittent high-power demand. This issue is further exacerbated by the increasing integration of renewable energy sources, which introduces additional fluctuations in power availability. One promising approach to mitigating these grid-related challenges is the use of battery energy storage systems (BESSs), which can help smooth power demand, provide peak shaving, and enhance grid stability. However, the integration of BESSs within UFC stations introduces additional complexity, particularly concerning power conversion, control, and system scalability. Current UFC station architectures predominantly rely on conventional solutions concerning the power electronics interface, and require bulky transformers and additional filtering to meet grid power quality requirements. Furthermore, existing topologies necessitate multiple dc-dc converter stages to accommodate different charging voltage levels (e.g., 400V, 800V, or >1kV), further increasing system complexity. To address these limitations, modular multilevel converter (MMC)-based architectures for electric vehicles (EVs) charging stations are investigated in this thesis. MMCs offer several advantages, including lower total harmonic distortion (THD), reduced reliance on bulky transformers, scalability, and enhanced flexibility in integrating multiple power sources. In particular, various converter architectures and control strategies are proposed and analyzed, addressing critical issues such as power quality, grid stability, and system modularity. The key contributions of this research include: • The analysis and comparison of different converter topologies for UFC stations, including fully modular architectures and configurations integrating isolated dc-dc converters. • development of a novel double-star MMC topology for integrating photovoltaic (PV) sources and loads, with applications in green hydrogen production for fuel-cell electric vehicles (FC-EVs). • A study on high-power isolated dc-dc converters leveraging cascaded cells to improve efficiency and reduce reactive power.File | Dimensione | Formato | |
---|---|---|---|
Modular_Multilevel_Converters_Applications_for_EV_charging_stations_rev3.pdf
accesso aperto
Dimensione
7.09 MB
Formato
Adobe PDF
|
7.09 MB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/297371
URN:NBN:IT:POLIMI-297371