Climate change has emerged as a pervasive global threat, disrupting ecological stability, economic resilience, and food security. This thesis presents a multi-scale assessment of climate-induced risks across two critical domains: financial and commodity markets, and agricultural systems, with a specific focus on rainfed wheat production in Iran. Through the innovative use of a Bayesian Network Vector Autoregressive (BNVAR) model, this study quantifies the direct and indirect impacts of global climate indices and natural disasters on market volatility. The findings reveal that commodity and financial markets exhibit strong sensitivity to climate signals, with distinct regional disparities in vulnerability. Natural disasters, particularly droughts and extreme temperatures, are significant transmission channels, amplifying market instability. On the agricultural side, the thesis employs an approach to estimate rainfed wheat risk across phenological stages under current and projected climate conditions. A stage-specific risk analysis is conducted, incorporating hazard, vulnerability, and exposure metrics to identify periods of heightened sensitivity. The analysis showed that wheat’s vulnerability to climate anomalies in Iran varies significantly across its five phenological stages. Stage 2 (sowing to emergence) and stage 4 (grain filling) consistently exhibited the highest vulnerability across historical and all future climate scenarios (SSP1-2.6, SSP2-4.5, SSP5-8.5). Central and eastern Iran consistently emerged as hotspots of climate risk. The final risk maps showed a general increase in climate-related threats across all scenarios, with SSP5-8.5 presenting the highest levels of risk. In some areas, risk levels under SSP1-2.6 slightly exceed those under SSP2-4.5, highlighting the region-specific nature of climate impacts and reinforcing the need for detailed local assessments. The research offers actionable recommendations for financial decision makers, agricultural planners, and policymakers, advocating for phenology-aware adaptation strategies, regionally tailored climate responses, and enhanced risk governance. This interdisciplinary contribution supports resilient, climate-smart development in vulnerable regions, offering scalable methodologies applicable to other rainfed agricultural systems and emerging economies.
Il cambiamento climatico si è affermato come una minaccia globale pervasiva, compromettendo la stabilità ecologica, la resilienza economica e la sicurezza alimentare. Questa tesi presenta una valutazione su scala multipla dei rischi indotti dal clima in due ambiti critici: i mercati finanziari e delle materie prime, e i sistemi agricoli, con un focus specifico sulla produzione di grano in asciutta in Iran. Attraverso l’utilizzo innovativo di un modello Bayesian Network Vector Autoregressive (BNVAR), lo studio quantifica gli impatti diretti e indiretti degli indici climatici globali e dei disastri naturali sulla volatilità dei mercati. I risultati mostrano che i mercati finanziari e delle materie prime sono fortemente sensibili ai segnali climatici, con evidenti disparità regionali in termini di vulnerabilità. I disastri naturali, in particolare siccità e temperature estreme, rappresentano canali di trasmissione rilevanti, amplificando l’instabilità dei mercati. Dal punto di vista agricolo, la tesi applica un approccio per stimare il rischio legato al grano in asciutta durante le fasi fenologiche, considerando le condizioni climatiche attuali e proiettate. L’analisi dei rischi specifici per fase include metriche di pericolo, vulnerabilità ed esposizione, identificando i periodi di maggiore sensibilità. L’analisi ha mostrato che la vulnerabilità del grano alle anomalie climatiche in Iran varia significativamente nelle cinque fasi fenologiche. La fase 2 (semina-emergenza) e la fase 4 (riempimento del chicco) risultano costantemente le più vulnerabili sia nei dati storici sia in tutti gli scenari climatici futuri (SSP1-2.6, SSP2-4.5, SSP5-8.5). Le regioni centrali e orientali dell'Iran sono emerse costantemente come hotspot di rischio climatico. Le mappe finali del rischio mostrano un aumento generale delle minacce legate al clima in tutti gli scenari, con il livello di rischio più elevato nello scenario SSP5-8.5. In alcune aree, i livelli di rischio nello scenario SSP1-2.6 superano leggermente quelli dello scenario SSP2-4.5, evidenziando la natura specifica dei fenomeni climatici a livello locale e rafforzando la necessità di valutazioni dettagliate. La ricerca propone raccomandazioni operative per i decisori finanziari, i pianificatori agricoli e i responsabili politici, promuovendo strategie di adattamento consapevoli della fenologia, risposte climatiche su scala regionale e un rafforzamento della governance del rischio. Questo contributo interdisciplinare sostiene uno sviluppo resiliente e intelligente dal punto di vista climatico nelle regioni vulnerabili, offrendo metodologie scalabili applicabili ad altri sistemi agricoli in asciutta e alle economie emergenti.
Valutazione su scala multipla dei rischi indotti dal cambiamento climatico nei sistemi agricoli e nei mercati finanziari
MOJTAHEDI, FATEMEH
2025
Abstract
Climate change has emerged as a pervasive global threat, disrupting ecological stability, economic resilience, and food security. This thesis presents a multi-scale assessment of climate-induced risks across two critical domains: financial and commodity markets, and agricultural systems, with a specific focus on rainfed wheat production in Iran. Through the innovative use of a Bayesian Network Vector Autoregressive (BNVAR) model, this study quantifies the direct and indirect impacts of global climate indices and natural disasters on market volatility. The findings reveal that commodity and financial markets exhibit strong sensitivity to climate signals, with distinct regional disparities in vulnerability. Natural disasters, particularly droughts and extreme temperatures, are significant transmission channels, amplifying market instability. On the agricultural side, the thesis employs an approach to estimate rainfed wheat risk across phenological stages under current and projected climate conditions. A stage-specific risk analysis is conducted, incorporating hazard, vulnerability, and exposure metrics to identify periods of heightened sensitivity. The analysis showed that wheat’s vulnerability to climate anomalies in Iran varies significantly across its five phenological stages. Stage 2 (sowing to emergence) and stage 4 (grain filling) consistently exhibited the highest vulnerability across historical and all future climate scenarios (SSP1-2.6, SSP2-4.5, SSP5-8.5). Central and eastern Iran consistently emerged as hotspots of climate risk. The final risk maps showed a general increase in climate-related threats across all scenarios, with SSP5-8.5 presenting the highest levels of risk. In some areas, risk levels under SSP1-2.6 slightly exceed those under SSP2-4.5, highlighting the region-specific nature of climate impacts and reinforcing the need for detailed local assessments. The research offers actionable recommendations for financial decision makers, agricultural planners, and policymakers, advocating for phenology-aware adaptation strategies, regionally tailored climate responses, and enhanced risk governance. This interdisciplinary contribution supports resilient, climate-smart development in vulnerable regions, offering scalable methodologies applicable to other rainfed agricultural systems and emerging economies.| File | Dimensione | Formato | |
|---|---|---|---|
|
PhD SDC Thesis_Fatemeh Mojtahedi.pdf
accesso aperto
Licenza:
Tutti i diritti riservati
Dimensione
12.99 MB
Formato
Adobe PDF
|
12.99 MB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/310094
URN:NBN:IT:IUSSPAVIA-310094