In this thesis has been discussed a model, defined to describe electromagnetic propagation phenomena, at high frequencies, in an indoor environment. The aim was to define a method useful to achieve sufficiently reliable and quick predictions of the power distribution generated, in an indoor environment, by a source located in the scene. In order to justify the assumptions and the choices made during phenomena and environment modelization, an algorithm on these models based has been defined and, afterwards, a new software has been developed. Thanks to this software some qualitative analyses have been made, for a first verification of the model. The simulations show a behaviour that seems coherent with theory, either in canonical and realistic environments, and confirm some choices correctness (as, for example, for diffraction contributions, here neglected). In the software code have been also introduced appropriate functions, to add some capacity in analysis of propagation phenomena in the time domain. To complete the models validation in quantitative terms, it was necessary to perform comparisons with measured values. For this reason a measurement campaign has been planned, finding a real environment useful to simulate and measure in the same scene, defining ad hoc protocols and choosing the necessary instruments. The comparisons made show that simulations results are consistent with measures trend.

Methods and algorithms for electromagnetic waves propagation in indoor environments

2008

Abstract

In this thesis has been discussed a model, defined to describe electromagnetic propagation phenomena, at high frequencies, in an indoor environment. The aim was to define a method useful to achieve sufficiently reliable and quick predictions of the power distribution generated, in an indoor environment, by a source located in the scene. In order to justify the assumptions and the choices made during phenomena and environment modelization, an algorithm on these models based has been defined and, afterwards, a new software has been developed. Thanks to this software some qualitative analyses have been made, for a first verification of the model. The simulations show a behaviour that seems coherent with theory, either in canonical and realistic environments, and confirm some choices correctness (as, for example, for diffraction contributions, here neglected). In the software code have been also introduced appropriate functions, to add some capacity in analysis of propagation phenomena in the time domain. To complete the models validation in quantitative terms, it was necessary to perform comparisons with measured values. For this reason a measurement campaign has been planned, finding a real environment useful to simulate and measure in the same scene, defining ad hoc protocols and choosing the necessary instruments. The comparisons made show that simulations results are consistent with measures trend.
2008
it
File in questo prodotto:
File Dimensione Formato  
Muro_Luca.pdf

accesso solo da BNCF e BNCR

Tipologia: Altro materiale allegato
Licenza: Tutti i diritti riservati
Dimensione 2.08 MB
Formato Adobe PDF
2.08 MB Adobe PDF

I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14242/314922
Il codice NBN di questa tesi è URN:NBN:IT:BNCF-314922