This thesis stems from the idea to draw a statistical soft-modeling framework to network data. Network data arise in very different and multidisciplinary fields in order to study relational ties among units. The different fields highlighted in recent years the necessity to collect relational and attribute data, as well as metadata describing the actors in the network. Since usual relational datasets are characterized by i) very different amount of units (from very few units to huge networks), ii) biased sampling (for instance, people with more social connections may have a higher chance of selection) and iii) a kind of heterogeneous information attached to both nodes and ties; these facets highlight the peculiarity for classical statistical tools and models to be applied. In the specific, we are interested in processes where social relations provide a basis for the alteration of an attitude or behavior by one actor in response to another one. This social process of attitude change, that appears in a social network, is known as social in uence or contagion. A mathematical formalization of the effects of social network on behaviors is given by the Network Effects Model. From an empirical point of view, these models are far from being directly observable. The possibility of measuring them as latent factors depending from multidimensional constructs still remains. All together, a component-based approach to network data through Partial Least Squares-path model algorithms is proposed. A simulation study is presented.

Network data in the Partial Least Squares framework

2014

Abstract

This thesis stems from the idea to draw a statistical soft-modeling framework to network data. Network data arise in very different and multidisciplinary fields in order to study relational ties among units. The different fields highlighted in recent years the necessity to collect relational and attribute data, as well as metadata describing the actors in the network. Since usual relational datasets are characterized by i) very different amount of units (from very few units to huge networks), ii) biased sampling (for instance, people with more social connections may have a higher chance of selection) and iii) a kind of heterogeneous information attached to both nodes and ties; these facets highlight the peculiarity for classical statistical tools and models to be applied. In the specific, we are interested in processes where social relations provide a basis for the alteration of an attitude or behavior by one actor in response to another one. This social process of attitude change, that appears in a social network, is known as social in uence or contagion. A mathematical formalization of the effects of social network on behaviors is given by the Network Effects Model. From an empirical point of view, these models are far from being directly observable. The possibility of measuring them as latent factors depending from multidimensional constructs still remains. All together, a component-based approach to network data through Partial Least Squares-path model algorithms is proposed. A simulation study is presented.
2014
it
File in questo prodotto:
File Dimensione Formato  
Spina_Stefania_26.pdf

accesso solo da BNCF e BNCR

Tipologia: Altro materiale allegato
Licenza: Tutti i diritti riservati
Dimensione 1.66 MB
Formato Adobe PDF
1.66 MB Adobe PDF

I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14242/315417
Il codice NBN di questa tesi è URN:NBN:IT:BNCF-315417