The knee joint plays a central role in human motion for its dual function: providing a large range of motion in flexion/extension and stability in the other degrees of freedom. Computational modeling is a powerful tool to deepen our understanding of the joint mechanics, overcoming the main limitations of experimental investigations, i.e. time, cost and impracticability, and providing valuable insights for prosthetic design, rehabilitation and surgical planning. Within this background, the specific aim of this dissertation is threefold: to develop a sequentially-defined kinetostatic model of the knee, comparing the performance of spherical and anatomical surfaces; to develop a dynamic model of the knee to predict the quadriceps force during the squat activity; to estimate the compressive force that the implanted knee joint needs in order to reproduce natural stability. This dissertation presents novel and efficient procedures to model and evaluate the behavior of the natural and implanted knee under the effect of static and dynamic loading conditions, extending the current knowledge in the field of musculoskeletal computational modeling.

Computational Modeling of Stability and Laxity in the Natural and Implanted Knee Joint

2016

Abstract

The knee joint plays a central role in human motion for its dual function: providing a large range of motion in flexion/extension and stability in the other degrees of freedom. Computational modeling is a powerful tool to deepen our understanding of the joint mechanics, overcoming the main limitations of experimental investigations, i.e. time, cost and impracticability, and providing valuable insights for prosthetic design, rehabilitation and surgical planning. Within this background, the specific aim of this dissertation is threefold: to develop a sequentially-defined kinetostatic model of the knee, comparing the performance of spherical and anatomical surfaces; to develop a dynamic model of the knee to predict the quadriceps force during the squat activity; to estimate the compressive force that the implanted knee joint needs in order to reproduce natural stability. This dissertation presents novel and efficient procedures to model and evaluate the behavior of the natural and implanted knee under the effect of static and dynamic loading conditions, extending the current knowledge in the field of musculoskeletal computational modeling.
2016
it
File in questo prodotto:
File Dimensione Formato  
Sintini_Irene_tesi.pdf

accesso solo da BNCF e BNCR

Tipologia: Altro materiale allegato
Licenza: Tutti i diritti riservati
Dimensione 34.05 MB
Formato Adobe PDF
34.05 MB Adobe PDF

I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14242/318581
Il codice NBN di questa tesi è URN:NBN:IT:BNCF-318581