This thesis deals with a novel control approach based on the extension of the well-known Internal Model Principle to the case of periodic switched linear exosystems. This extension, inspired by power electronics applications, aims to provide an effective design method to robustly achieve the asymptotic tracking of periodic references with an infinite number of harmonics. In the first part of the thesis the basic components of the novel control scheme are described and preliminary results on stabilization are provided. In the second part, advanced control methods for two applications coming from the world high energy physics are presented.
Internal Model Principle: extension to the switching case and applications
2009
Abstract
This thesis deals with a novel control approach based on the extension of the well-known Internal Model Principle to the case of periodic switched linear exosystems. This extension, inspired by power electronics applications, aims to provide an effective design method to robustly achieve the asymptotic tracking of periodic references with an infinite number of harmonics. In the first part of the thesis the basic components of the novel control scheme are described and preliminary results on stabilization are provided. In the second part, advanced control methods for two applications coming from the world high energy physics are presented.| File | Dimensione | Formato | |
|---|---|---|---|
|
toniato_manuel_tesi.pdf
accesso solo da BNCF e BNCR
Tipologia:
Altro materiale allegato
Licenza:
Tutti i diritti riservati
Dimensione
2.3 MB
Formato
Adobe PDF
|
2.3 MB | Adobe PDF |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/334347
URN:NBN:IT:BNCF-334347