The fact that our universe is filled up with an unconventional form of matter, which is still undetected and unidentified, earned it the evocative name of dark matter (DM). The existence of DM is solidly supported by gravitational and cosmological arguments. Firstly, galactic rotational velocities involving many galaxy cluster populations exhibit a remarkable independence of the distance from the center of the galaxy itself. This result induced the scientific community, unless we modify the current understanding of gravity, to accept that a vast part of matter is not bright (i.e. does not couple with electromagnetic radiation) and therefore is dark. Secondly, studies of Cosmic Microwave Background anisotropies not only suggest the existence of DM, but also the fact that it should account, as Cold Dark Matter (CDM), for approximately 25% of the matter-energy content of the universe, while standard baryonic matter contributes about 5%, and dark energy accounts for the remaining part. This stands as an amazing change of perception of our Universe, whose directly observable and identifiable parts are just a small fraction of it. Much more difficulty is met when the puzzle of the identification of DM is addressed. Indeed, this work does not discuss in depth scenarios that try to avoid the existence of dark matter as much as possible but instead assumes its existence and investigates the complicated problem of identifying its nature. Further observational evidence points out that the candidates for the DM constituent particles should be electromagnetically neutral, non-relativistic, and their interaction with ordinary matter should preferably be weak, though in a broad sense: not only by means of weak interactions, but also by other kinds of couplings. Possible candidates for DM particles should meet the characteristics specified above. Such candidates cannot be easily found among the particles in the Standard Model (SM), and can be searched for in theories beyond the SM. Among possible DM particle candidates, a strong interest has been raised towards WIMPs (Weakly Interacting Massive Particles), i.e. particle states which interact only weakly with standard matter, which are not light as neutrinos, whose existence is predicted by theories beyond the Standard Model, and find a solid justification as relics from the Big Bang, with densities quantitatively comparable to the predicted DM density (WIMP miracle). A great number of experiments are currently aimed at looking for DM signatures with different approaches, in the perspective of finding evidence of physics beyond the Standard Model, a goal which high-energy physics is pursuing with great effort in many ways. These approaches can be divided into three categories: direct searches, indirect searches, and searches in production at colliders. One of the indirect approaches to look for DM signatures focuses on the products of possible annihilation and decay of DM candidate particles. These final states are searched by looking at the cosmic radiation from regions where DM is expected to be more abundant. High-energy photons are among the possible final states of the predicted top- down processes involving WIMPs. Unlike charged particles, which could be produced as well, gamma rays are not deflected by the galactic magnetic field and therefore bring important information about their sources that we are not able to retrieve from charged radiation. Gamma rays can thus be considered an excellent probe for DM indirect searches. Supposing that WIMPs can self-annihilate or directly decay into gamma rays at rest, a signature for these kinds of processes could be represented by line- like features as excesses in the gamma-ray spectrum towards the chosen target, since the gamma rays eventually produced should be essentially monochromatic. The line-like gamma-ray signal is expected to be very small because of the small couplings with which DM is predicted to interact, making this kind of searches as intriguing as challenging. Another possible signature, which can be viewed as a slight complication of the monochromatic line, is the box-shaped feature. This spectral signature stems from the assumption that WIMPs can annihilate into low-mass metastable mediators that in turn decay into gamma rays. Many studies involving simulations claim that our own Galaxy resides in a DM halo, which therefore is a possible target for DM searches. In this work, a search for DM line-like and box-like signatures is performed by analyzing more than 15 years of the energy spectra of galactic gamma rays measured by Fermi-LAT. The Fermi mission is still producing remarkable scientific feats after 17 years in orbit (and many more counting also the design phases), providing reliable data of gamma rays from 500 MeV to 1 TeV. If we look at the sensitivity of other currently active gamma-ray telescopes, what stands out is that we are almost completely blind in an energy window that spans between 0.5 and a few MeV, the so-called MeV gap. This is why a strong effort is being undertaken to build the next generation of gamma-ray telescopes capable of detecting in the MeV range, and several scientific motivations are given to justify it, including the possibility that DM signatures of massive particle candidates (i.e. WIMPs) could also produce spectral signatures in that energy window currently not observable with adequate sensitivity. This is the main motivation for a review of some of the current projects for future detectors, with particular focus on the Advanced Particle-astrophysics Telescope (APT), which aims to decuplicate the on-axis effective area of Fermi- LAT and, with its increased exposure, could give decisive results in dark matter searches in gamma rays. The thesis consists of five chapters: • Chapter 1: A summary of the evidence pointing towards DM existence and a list of some possible DM candidates (with emphasis on WIMPs). • Chapter 2: A review of the main results in dark matter indirect searches, focusing on gamma rays as probes. • Chapter 3: A presentation of some airborne gamma-ray telescopes, in particular the Fermi mission and its main instrument, the LAT. The characteristics and performance of LAT are described, along with insights on future telescopes such as APT. • Chapter 4: The data analysis aimed at identifying DM signatures (monochromatic spectral lines and box-shaped features) and setting upper limits on feature intensity and constraints on the annihilation cross-section and decay time of WIMPs. • Chapter 5: A study of the sensitivity to DM line features in gamma rays on an APT-like detector, taking advantage of the methodology developed in Chapter 4.
Il fatto che il nostro Universo sia permeato da una forma di materia non convenzionale, tuttora non rivelata né identificata, le ha valso l’evocativo nome di materia oscura (Dark Matter, DM). L’esistenza della DM è solidamente supportata da argomenti di natura gravitazionale e cosmologica. In primo luogo, le velocità di rotazione galattiche osservate in numerose popolazioni di ammassi di galassie mostrano una notevole indipendenza dalla distanza dal centro della galassia stessa. Tale risultato ha indotto la comunità scientifica, a meno di modificare l’attuale comprensione della gravità, ad accettare che una vasta frazione della materia non sia luminosa (i.e., non interagisca con la radiazione elettromagnetica) e sia pertanto oscura. In secondo luogo, gli studi delle anisotropie della Radiazione Cosmica di Fondo (Cosmic Microwave Background, CMB) non solo suggeriscono l’esistenza della DM, ma indicano anche che essa dovrebbe contribuire, sotto forma di Cold Dark Matter (CDM), a circa il 25% del contenuto totale di materia-energia dell’Universo, mentre la materia barionica standard contribuisce per circa il 5% e l’energia oscura costituisce la parte restante. Ciò rappresenta un sorprendente cambiamento di prospettiva nella nostra visione dell’Universo, le cui componenti direttamente osservabili e identificabili costituiscono soltanto una piccola frazione del totale. Maggiore difficoltà emerge quando si affronta il problema dell’identificazione della materia oscura. In effetti, questo lavoro non si propone di discutere in modo approfondito i modelli che cercano di fare a meno dell’esistenza della materia oscura, piuttosto ne sostiene l’esistenza e indaga il complesso problema dell’identificazione della sua natura. Ulteriori evidenze osservative indicano che le particelle candidate a costituire la materia oscura dovrebbero essere elettricamente neutre, non relativistiche, e che la loro interazione con la materia ordinaria dovrebbe essere preferibilmente debole, sebbene in senso ampio: non solo tramite interazioni deboli, ma anche attraverso altri tipi di accoppiamenti. I possibili candidati a particelle di DM devono soddisfare le caratteristiche sopra descritte. Tali candidati non possono essere facilmente individuati tra le particelle del Modello Standard (SM), e vanno pertanto ricercati in teorie che lo estendono. Tra i possibili candidati, un forte interesse è stato rivolto alle WIMPs (Weakly Interacting Massive Particles), ossia stati particellari che interagiscono soltanto debolmente con la materia ordinaria, che non sono leggeri come i neutrini, la cui esistenza è prevista da teorie oltre il Modello Standard e che trovano una solida giustificazione come resti del Big Bang, con densità quantitativamente confrontabili con quella prevista per la materia oscura (il cosiddetto miracolo delle WIMP). Un gran numero di esperimenti è attualmente impegnato nella ricerca di segnali di materia oscura attraverso approcci differenti, nella prospettiva di individuare evidenze di fisica oltre il Modello Standard, obiettivo che la fisica delle alte energie persegue con grande sforzo. Tali approcci possono essere suddivisi in tre categorie: ricerche dirette, ricerche indirette e ricerche in produzione presso i collisionatori. Uno degli approcci indiretti alla ricerca di segnali di materia oscura si concentra sui prodotti di possibili processi di annichilazione e decadimento delle particelle candidate. Questi stati finali vengono ricercati osservando la radiazione cosmica proveniente da regioni in cui ci si attende una maggiore abbondanza di DM. I fotoni di alta energia sono tra i possibili stati finali dei processi top-down previsti che coinvolgono le WIMPs. A differenza delle particelle cariche, che pure potrebbero essere prodotte, i raggi gamma non vengono deviati dal campo magnetico galattico e forniscono quindi informazioni cruciali sulle loro sorgenti, che non è possibile ricavare dalla radiazione carica. I raggi gamma possono pertanto essere considerati un eccellente strumento per le ricerche indirette di materia oscura. Supponendo che le WIMPs possano auto-annichilarsi o decadere direttamente in raggi gamma a riposo, una possibile segnatura di tali processi sarebbe rappresentata da strutture di tipo linea monocromatica, osservabili come eccessi nello spettro energetico dei raggi gamma nella direzione del bersaglio selezionato, poiché i fotoni prodotti dovrebbero essere essenzialmente monoenergetici. Le linee spettrali, come segnale di materia oscura, sono attese essere molto deboli a causa dei piccoli accoppiamenti con cui la materia oscura è prevista interagire, rendendo questo tipo di ricerca tanto affascinante quanto impegnativo. Un’altra possibile segnatura, che può essere vista come una lieve complicazione della linea monocromatica, è la box spettrale. Questa segnatura deriva dall’ipotesi che le WIMPs possano annichilarsi in mediatori metastabili di bassa massa, i quali a loro volta decadono in raggi gamma. Numerosi studi basati su simulazioni indicano che la nostra Galassia sia immersa in un alone di materia oscura, che rappresenta quindi un potenziale oggetto di studio per la sua ricerca. In questo lavoro viene condotta una ricerca di segnali di materia oscura di tipo linea monocromatica e box mediante l’analisi di oltre 15 anni di spettri energetici dei raggi gamma galattici misurati da Fermi-LAT. La missione Fermi continua a produrre risultati scientifici di rilievo anche dopo 17 anni in orbita (e molti di più considerando anche le fasi di progettazione), fornendo dati affidabili sui raggi gamma nell’intervallo energetico compreso tra 500 MeV e 1 TeV. Considerando la sensibilità degli altri telescopi per raggi gamma attualmente operativi, emerge chiaramente che siamo quasi completamente ciechi in una finestra energetica compresa tra 0,5 e pochi MeV, il cosiddetto MeV gap. Per questo motivo è in corso un notevole sforzo volto alla realizzazione della prossima generazione di telescopi per raggi gamma capaci di operare nella banda dei MeV. Numerose motivazioni scientifiche sostengono tale impegno, inclusa la possibilità che segnali di DM associati a candidati di massa elevata (come le WIMPs) possano produrre segnature spettrali proprio in quella finestra energetica attualmente non osservabile con sensibilità adeguata. Questa costituisce la principale motivazione per una rassegna di alcuni progetti attuali di futuri rivelatori, con particolare attenzione all’Advanced Particle-astrophysics Telescope (APT), che si propone di decuplicare l’area efficace in asse di Fermi-LAT e che, grazie alla maggiore esposizione, potrebbe fornire risultati decisivi nelle ricerche di materia oscura nei raggi gamma. La tesi è articolata in cinque capitoli: • Capitolo 1: una sintesi delle evidenze a favore dell’esistenza della materia oscura e una rassegna di alcuni possibili candidati (con particolare enfasi sulle WIMPs). • Capitolo 2: una panoramica dei principali risultati delle ricerche indirette di materia oscura, con particolare attenzione ai raggi gamma come sonde osservative. • Capitolo 3: una presentazione di alcuni telescopi spaziali per raggi gamma, in particolare della missione Fermi e del suo strumento principale, il LAT. Vengono descritte le caratteristiche e le prestazioni del LAT, insieme a prospettive su futuri telescopi come APT. • Capitolo 4: l’analisi dei dati finalizzata all’identificazione di segnali di materia oscura (linee spettrali monocromatiche e box) e alla determinazione di limiti superiori sull’intensità delle segnature spettrali, nonché di vincoli sulla sezione d’urto di annichilazione e sul tempo di decadimento delle WIMPs. • Capitolo 5: uno studio della sensibilità a segnature di DM di tipo lineare nei raggi gamma per un ipotetico rivelatore simile ad APT, sfruttando la metodologia sviluppata nel Capitolo 4.
Search for dark matter signal features in the energy spectra of Galactic gamma rays measured by the Fermi Large Area Telescope
Giliberti, Mario
2026
Abstract
The fact that our universe is filled up with an unconventional form of matter, which is still undetected and unidentified, earned it the evocative name of dark matter (DM). The existence of DM is solidly supported by gravitational and cosmological arguments. Firstly, galactic rotational velocities involving many galaxy cluster populations exhibit a remarkable independence of the distance from the center of the galaxy itself. This result induced the scientific community, unless we modify the current understanding of gravity, to accept that a vast part of matter is not bright (i.e. does not couple with electromagnetic radiation) and therefore is dark. Secondly, studies of Cosmic Microwave Background anisotropies not only suggest the existence of DM, but also the fact that it should account, as Cold Dark Matter (CDM), for approximately 25% of the matter-energy content of the universe, while standard baryonic matter contributes about 5%, and dark energy accounts for the remaining part. This stands as an amazing change of perception of our Universe, whose directly observable and identifiable parts are just a small fraction of it. Much more difficulty is met when the puzzle of the identification of DM is addressed. Indeed, this work does not discuss in depth scenarios that try to avoid the existence of dark matter as much as possible but instead assumes its existence and investigates the complicated problem of identifying its nature. Further observational evidence points out that the candidates for the DM constituent particles should be electromagnetically neutral, non-relativistic, and their interaction with ordinary matter should preferably be weak, though in a broad sense: not only by means of weak interactions, but also by other kinds of couplings. Possible candidates for DM particles should meet the characteristics specified above. Such candidates cannot be easily found among the particles in the Standard Model (SM), and can be searched for in theories beyond the SM. Among possible DM particle candidates, a strong interest has been raised towards WIMPs (Weakly Interacting Massive Particles), i.e. particle states which interact only weakly with standard matter, which are not light as neutrinos, whose existence is predicted by theories beyond the Standard Model, and find a solid justification as relics from the Big Bang, with densities quantitatively comparable to the predicted DM density (WIMP miracle). A great number of experiments are currently aimed at looking for DM signatures with different approaches, in the perspective of finding evidence of physics beyond the Standard Model, a goal which high-energy physics is pursuing with great effort in many ways. These approaches can be divided into three categories: direct searches, indirect searches, and searches in production at colliders. One of the indirect approaches to look for DM signatures focuses on the products of possible annihilation and decay of DM candidate particles. These final states are searched by looking at the cosmic radiation from regions where DM is expected to be more abundant. High-energy photons are among the possible final states of the predicted top- down processes involving WIMPs. Unlike charged particles, which could be produced as well, gamma rays are not deflected by the galactic magnetic field and therefore bring important information about their sources that we are not able to retrieve from charged radiation. Gamma rays can thus be considered an excellent probe for DM indirect searches. Supposing that WIMPs can self-annihilate or directly decay into gamma rays at rest, a signature for these kinds of processes could be represented by line- like features as excesses in the gamma-ray spectrum towards the chosen target, since the gamma rays eventually produced should be essentially monochromatic. The line-like gamma-ray signal is expected to be very small because of the small couplings with which DM is predicted to interact, making this kind of searches as intriguing as challenging. Another possible signature, which can be viewed as a slight complication of the monochromatic line, is the box-shaped feature. This spectral signature stems from the assumption that WIMPs can annihilate into low-mass metastable mediators that in turn decay into gamma rays. Many studies involving simulations claim that our own Galaxy resides in a DM halo, which therefore is a possible target for DM searches. In this work, a search for DM line-like and box-like signatures is performed by analyzing more than 15 years of the energy spectra of galactic gamma rays measured by Fermi-LAT. The Fermi mission is still producing remarkable scientific feats after 17 years in orbit (and many more counting also the design phases), providing reliable data of gamma rays from 500 MeV to 1 TeV. If we look at the sensitivity of other currently active gamma-ray telescopes, what stands out is that we are almost completely blind in an energy window that spans between 0.5 and a few MeV, the so-called MeV gap. This is why a strong effort is being undertaken to build the next generation of gamma-ray telescopes capable of detecting in the MeV range, and several scientific motivations are given to justify it, including the possibility that DM signatures of massive particle candidates (i.e. WIMPs) could also produce spectral signatures in that energy window currently not observable with adequate sensitivity. This is the main motivation for a review of some of the current projects for future detectors, with particular focus on the Advanced Particle-astrophysics Telescope (APT), which aims to decuplicate the on-axis effective area of Fermi- LAT and, with its increased exposure, could give decisive results in dark matter searches in gamma rays. The thesis consists of five chapters: • Chapter 1: A summary of the evidence pointing towards DM existence and a list of some possible DM candidates (with emphasis on WIMPs). • Chapter 2: A review of the main results in dark matter indirect searches, focusing on gamma rays as probes. • Chapter 3: A presentation of some airborne gamma-ray telescopes, in particular the Fermi mission and its main instrument, the LAT. The characteristics and performance of LAT are described, along with insights on future telescopes such as APT. • Chapter 4: The data analysis aimed at identifying DM signatures (monochromatic spectral lines and box-shaped features) and setting upper limits on feature intensity and constraints on the annihilation cross-section and decay time of WIMPs. • Chapter 5: A study of the sensitivity to DM line features in gamma rays on an APT-like detector, taking advantage of the methodology developed in Chapter 4.| File | Dimensione | Formato | |
|---|---|---|---|
|
38 ciclo-GILIBERTI Mario.pdf
accesso aperto
Licenza:
Tutti i diritti riservati
Dimensione
34.35 MB
Formato
Adobe PDF
|
34.35 MB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/353859
URN:NBN:IT:POLIBA-353859