Metamaterials---artificially engineered materials to obtain unconventional mechanical (and not only) responses---are at the center of intensive research efforts, paving the way for novel technologies that will shape future society. Through carefully designed microstructures, realized via 3D/4D printing and additive manufacturing techniques, mechanical metamaterials show auxeticity (negative Poisson's ratio), negative mass density, tunable wave propagation, and negative thermal coefficients, in addition to efficiently absorbing and releasing energy. Despite the significant advances in the last twenty years in this field, crucial aspects still to be completely solved are the stability and dynamics of periodic metamaterials. In this thesis, these two aspects are treated through analytical (Bloch-Floquet theory), numerical (Finite Element simulations), and experimental (tests on 3D printed specimens) approaches. The stability of periodic metamaterials has been investigated under generic macro-stress states, deriving analytical closed-form solutions for the stability domains and associated critical modes. In particular, square lattices with flexible diagonal cables and lattices equipped by rigid nodes of finite size have been analyzed. Thanks to the proper design of these two elements, the expansion of the stability domain is made possible, so microscopic critical modes (with a finite wavelength) may emerge before the macroscopic ones (with an infinite wavelength), thus reversing the usual behaviour. The dynamic response has been addressed for metamaterials obtained as the periodic repetition of a hexagonal lattice characterized by three different axial stiffnesses and masses. In addition to the classical features of localized deformation (beaming) at specific frequencies and band-gaps widening, the unconventional response of 'extreme' anisotropic dispersion has been disclosed. By means of perturbation technique, this phenomenon is shown to be closely related to the loss of fidelity of the equivalent isotropic Cauchy continuum model and to be fully captured only by anisotropic strain gradient (Mindlin) modelling. These findings enable the design of metamaterials capable of microscale dissipation and extremely anisotropic band-gaps.
I metamateriali, materiali progettati artificialmente per ottenere risposte meccaniche (e non solo) non convenzionali, sono al centro di intensi sforzi di ricerca, aprendo la strada a nuove tecnologie che daranno forma alla società futura. Grazie a microstrutture accuratamente progettate, realizzate tramite stampa 3D/4D e tecniche di additive manufacturing, i metamateriali meccanici mostrano auxeticità (coefficiente di Poisson negativo), densità di massa negativa, propagazione d'onda programmabile e coefficienti termici negativi, oltre ad assorbire e rilasciare energia in modo efficiente. Nonostante i significativi progressi compiuti negli ultimi vent'anni in questo campo, la stabilità e la dinamica dei metamateriali periodici rimangono ancora aspetti cruciali da risolvere. In questa tesi, questi due aspetti sono trattati attraverso approcci analitici (teoria di Bloch-Floquet), numerici (simulazioni agli elementi finiti) e sperimentali (test su provini stampati in 3D). La stabilità dei metamateriali periodici è stata studiata in condizioni di macro-stress generiche, ricavando soluzioni analitiche in forma chiusa per i domini di stabilità e i modi critici associati. In particolare, sono stati analizzati reticoli a maglie quadrate con cavi diagonali flessibili e reticoli dotati di nodi rigidi di dimensione finita. Grazie alla corretta progettazione di questi due elementi, è possibile espandere il dominio di stabilità, in modo che i modi critici microscopici (con lunghezza d'onda finita) possano emergere prima di quelli macroscopici (con lunghezza d'onda infinita), invertendo così il comportamento usuale. La risposta dinamica è stata studiata per metamateriali ottenuti come ripetizione periodica di un reticolo esagonale caratterizzato da tre diverse rigidezze assiali e masse. Oltre alle caratteristiche classiche di deformazione localizzata (beaming) a frequenze specifiche e allargamento di band-gap, è stata rivelata la risposta non convenzionale della dispersione anisotropa "estrema". Mediante la tecnica perturbativa, si è dimostrato che questo fenomeno è strettamente correlato alla perdita di accuratezza del modello continuo equivalente isotropo di Cauchy e che può essere pienamente catturato solo dalla modellazione anisotropa strain gradient (Mindlin). Questi risultati consentono la progettazione di metamateriali in grado di dissipare alla microscala e di presentare band-gap estremamente anisotropi.
Stability domains and dynamic anisotropy in architected metamaterials
MARASCIUOLO, NICOLA
2026
Abstract
Metamaterials---artificially engineered materials to obtain unconventional mechanical (and not only) responses---are at the center of intensive research efforts, paving the way for novel technologies that will shape future society. Through carefully designed microstructures, realized via 3D/4D printing and additive manufacturing techniques, mechanical metamaterials show auxeticity (negative Poisson's ratio), negative mass density, tunable wave propagation, and negative thermal coefficients, in addition to efficiently absorbing and releasing energy. Despite the significant advances in the last twenty years in this field, crucial aspects still to be completely solved are the stability and dynamics of periodic metamaterials. In this thesis, these two aspects are treated through analytical (Bloch-Floquet theory), numerical (Finite Element simulations), and experimental (tests on 3D printed specimens) approaches. The stability of periodic metamaterials has been investigated under generic macro-stress states, deriving analytical closed-form solutions for the stability domains and associated critical modes. In particular, square lattices with flexible diagonal cables and lattices equipped by rigid nodes of finite size have been analyzed. Thanks to the proper design of these two elements, the expansion of the stability domain is made possible, so microscopic critical modes (with a finite wavelength) may emerge before the macroscopic ones (with an infinite wavelength), thus reversing the usual behaviour. The dynamic response has been addressed for metamaterials obtained as the periodic repetition of a hexagonal lattice characterized by three different axial stiffnesses and masses. In addition to the classical features of localized deformation (beaming) at specific frequencies and band-gaps widening, the unconventional response of 'extreme' anisotropic dispersion has been disclosed. By means of perturbation technique, this phenomenon is shown to be closely related to the loss of fidelity of the equivalent isotropic Cauchy continuum model and to be fully captured only by anisotropic strain gradient (Mindlin) modelling. These findings enable the design of metamaterials capable of microscale dissipation and extremely anisotropic band-gaps.| File | Dimensione | Formato | |
|---|---|---|---|
|
38 ciclo-MARASCIUOLO Nicola.pdf
embargo fino al 15/01/2027
Licenza:
Tutti i diritti riservati
Dimensione
61.74 MB
Formato
Adobe PDF
|
61.74 MB | Adobe PDF |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/354089
URN:NBN:IT:POLIBA-354089