Gene delivery has emerged as a cornerstone of modern biotechnology and medicine, offering unprecedented opportunities for treating genetic disorders, cancer, and infectious diseases. However, despite significant progress, current non-viral gene delivery systems face two critical challenges: low transfection efficiency (T.E.) and high cytotoxicity, alongside issues with reproducibility and standardization in the production of nucleic acid (NA) assemblies. This Ph.D. thesis addresses these limitations through a comprehensive and environmentally conscious approach based on two core pillars. The first pillar involves designing novel gene delivery systems using amino acid-based polymers (polypeptides) as green, bio-inspired, biocompatible, and biodegradable vectors for NA delivery. This pillar introduces a new framework for systematically evaluating polypeptide-based gene delivery vectors. By leveraging artificial intelligence (AI) for data normalization, novel performance metrics were established, enabling meaningful cross-study comparisons across diverse polypeptide families. This analysis identified critical structural motifs and compositional features that influence T.E.. Within this pillar, four novel fusogenic polypeptides were designed and characterized, demonstrating how targeted sequence modifications can impact gene delivery performance across various types of NAs. The second pillar focuses on optimizing the assembly processes of gene delivery complexes. A novel microfluidic platform was developed, capable of generating polyplexes at multiple polymer-to nucleic acid ratios (N/Ps) simultaneously, facilitating high-throughput standardized screening with minimal reagent consumption. Additionally, the VibroFect technology was validated, showcasing how controlled vibrational mixing of polymer and NA to produce complexes significantly enhances T.E. while minimizing cytotoxicity - outperforming conventional methods and commercial reagents. Together, these advances lay the groundwork for next-generation gene delivery systems that combine rational vector design with standardized, efficient production methods. By tackling key challenges related to vector design, reproducibility, and environmental impact, this work contributes to the development of safer, and more efficient non-viral vectors. The complementary approaches highlighted here emphasize the importance of multifaceted strategies in overcoming the complex barriers associated with NA delivery.
La veicolazione di acidi nucleici in cellula si è affermata come un fondamento della biotecnologia e della medicina moderne, offrendo opportunità senza precedenti per il trattamento di malattie genetiche, cancro e malattie infettive. Tuttavia, nonostante i significativi progressi, i sistemi attuali di veicolazione genica a base di vettori non virali affrontano due sfide critiche: bassa efficienza di trasfezione e alta citotossicità, insieme a problemi di riproducibilità e standardizzazione nella produzione di complessi a base di acidi nucleici. Questa tesi di dottorato affronta queste limitazioni attraverso un approccio completo e rispettoso dell'ambiente basato su due pilastri fondamentali. La prima linea di ricerca consiste nel progettare nuovi sistemi di veicolazione genica utilizzando polimeri basati su aminoacidi (polipeptidi) come vettori green, bio-derivati, biocompatibili e biodegradabili per la consegna di acidi nucleici. Questo pilastro introduce un nuovo framework per valutare sistematicamente i vettori di consegna genica basati su polipeptidi. Sfruttando l'intelligenza artificiale (AI) per la normalizzazione dei dati, sono stati stabiliti nuovi parametri di prestazione, consentendo significative comparazioni tra studi diversi su famiglie di polipeptidi diverse. Questa analisi ha identificato motivi strutturali critici e caratteristiche compositive che influenzano l'efficienza di trasfezione. All'interno di questa linea di ricerca, sono stati progettati e caratterizzati quattro nuovi polipeptidi fusogenici, dimostrando come le modifiche mirate alla sequenza possano influenzare le prestazioni di veicolazione genica su vari tipi di acidi nucleici. La seconda linea di ricerca si concentra sull'ottimizzazione dei processi di assemblaggio dei complessi a base di acidi nucleici. È stata sviluppata una nuova piattaforma microfluidica in grado di generare poliplessi a diversi rapporti polimero/acido nucleico (N/P) contemporaneamente, facilitando lo screening ad alto rendimento con consumo minimo di reagenti. Inoltre, è stata validata la tecnologia VibroFect, dimostrando come il miscelamento vibratorio controllato di polimero e acido nucleico per produrre complessi migliori significativamente l'efficienza di trasfezione riducendo al minimo la citotossicità, superando i metodi convenzionali e i reagenti commerciali. Insieme, questi progressi gettano le basi per sistemi di veicolazione genica di prossima generazione che combinano design razionale dei vettori con metodi efficienti e standardizzati di produzione. Affrontando sfide chiave legate al design dei vettori, alla riproducibilità e all'impatto ambientale, questo lavoro contribuisce allo sviluppo di vettori non virali più sicuri ed efficienti.
Bio-inspired and green materials and assembly platforms for effective non-viral gene delivery
Giovanni, Protopapa
2025
Abstract
Gene delivery has emerged as a cornerstone of modern biotechnology and medicine, offering unprecedented opportunities for treating genetic disorders, cancer, and infectious diseases. However, despite significant progress, current non-viral gene delivery systems face two critical challenges: low transfection efficiency (T.E.) and high cytotoxicity, alongside issues with reproducibility and standardization in the production of nucleic acid (NA) assemblies. This Ph.D. thesis addresses these limitations through a comprehensive and environmentally conscious approach based on two core pillars. The first pillar involves designing novel gene delivery systems using amino acid-based polymers (polypeptides) as green, bio-inspired, biocompatible, and biodegradable vectors for NA delivery. This pillar introduces a new framework for systematically evaluating polypeptide-based gene delivery vectors. By leveraging artificial intelligence (AI) for data normalization, novel performance metrics were established, enabling meaningful cross-study comparisons across diverse polypeptide families. This analysis identified critical structural motifs and compositional features that influence T.E.. Within this pillar, four novel fusogenic polypeptides were designed and characterized, demonstrating how targeted sequence modifications can impact gene delivery performance across various types of NAs. The second pillar focuses on optimizing the assembly processes of gene delivery complexes. A novel microfluidic platform was developed, capable of generating polyplexes at multiple polymer-to nucleic acid ratios (N/Ps) simultaneously, facilitating high-throughput standardized screening with minimal reagent consumption. Additionally, the VibroFect technology was validated, showcasing how controlled vibrational mixing of polymer and NA to produce complexes significantly enhances T.E. while minimizing cytotoxicity - outperforming conventional methods and commercial reagents. Together, these advances lay the groundwork for next-generation gene delivery systems that combine rational vector design with standardized, efficient production methods. By tackling key challenges related to vector design, reproducibility, and environmental impact, this work contributes to the development of safer, and more efficient non-viral vectors. The complementary approaches highlighted here emphasize the importance of multifaceted strategies in overcoming the complex barriers associated with NA delivery.| File | Dimensione | Formato | |
|---|---|---|---|
|
Ph.D. Thesis in Bioengineering - Protopapa Giovanni.pdf
accesso solo da BNCF e BNCR
Licenza:
Tutti i diritti riservati
Dimensione
4.27 MB
Formato
Adobe PDF
|
4.27 MB | Adobe PDF |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/354768
URN:NBN:IT:POLIMI-354768