Functional organic materials are emerging as versatile and sustainable key solutions in the field of energy-efficient construction and smart building management. Their unique and tunable electrical, optical, and thermal properties make them ideal candidates for developing adaptive and intelligent systems aligned with the principles of environmental sustainability and the circular economy. Within this rapidly evolving field, functional organic materials can be engineered to exhibit specific chemico-physical characteristics, enabling the creation of dynamic building components able to respond to environmental stimuli and optimize energy performance. Among these, donor–acceptor–donor (D–A–D) small molecules stand out due to their well-defined electronic structure, light-weight, easy tuning of HOMO and LUMO energy levels and processability on flexible substrates. In this thesis work, two classes of D–A–D compounds were investigated for their potential in developing next-generation smart building materials: (i) benzothieno[3,2-b][1]benzothiophene (BTBT)-and benzothieno[3,2-b][1]benzothiophene tetraoxide (BTBTOx₄)-based semiconductors and (ii) croconaine-based organic dye. BTBT and BTBTOx₄ are planar π-conjugated cores based on fused ring systems, that exhibit remarkable charge transport properties, making them excellent building blocks for both p-type and n-type organic semiconductors. Six new small molecules, PTz₂-BTBT, PTz₂-BTBTOx₄, MPA₂-BTBT, MPA₂-BTBTOx₄, POCz₂-BTBT, and POCz₂-BTBTOx₄, were designed and synthetized via a microwave-assisted Buchwald–Hartwig cross-coupling reaction, with D–A–D architectures, combining BTBT/BTBTOx₄ as electron-accepting cores and phenothiazine, bis(4-methoxyphenyl)amine and 3,6-bis(4-(octyloxy)phenyl)-9H-carbazole as donor groups. Electrical characterization revealed a hole-transport capability for BTBT-derivatives and ambipolar transport behavior for BTBTOx₄-derivatives. In addition to their charge-transport capabilities, BTBTOx₄-based compounds demonstrated thermally activated delayed fluorescence (TADF) properties, making them promising materials for high-efficiency organic light-emitting diodes (OLEDs). Theoretical and photophysical studies confirmed their TADF behavior, with oxygen-induced quenching experiments and time-resolved photoluminescence supporting delayed fluorescence emission. Among them, POCz₂-BTBTOx₄ exhibited minimal self-quenching and maintained high photoluminescence efficiency, even in neat films, enabling its integration into OLED devices fabricated by spin-coating and inkjet-printing techniques. Complementarily, croconaine (CR)-based materials were investigated as organic thermal additives of polymers to modulate the thermal properties of poly(L-lactic acid) (L-PLA). A benzoindolenine-based croconaine (CR-BI) with strong NIR absorption and high affinity with L-PLA chains was selected to realize L-PLA@CR-BI composite films with a uniform coloration by the CR-BI as a consequence of a homogeneous distribution of the organic dye within the polymer matrix. Remarkably, even at a low loading (1wt%), CR-BI is able of increasing by more than 240% the thermal diffusivity and conductivity of PLA, acting as a very efficient thermal modulator and as a molecular plasticizer that improves chain mobility and crystallinity. These features open new opportunities for thermal energy management and storage applications in sustainable building materials. Overall, the integration of BTBT/BTBTOx₄-based semiconductors and PLA@CR-BI composites exemplifies a multidisciplinary approach to the design of functional organic materials capable of combining optical emission, charge transport, and tunable thermal behavior. The synergistic study of these two classes of organic platforms lays the groundwork for the next generation of responsive, energy-saving, and environmentally friendly smart building technologies.
I materiali organici funzionali stanno emergendo come soluzioni chiave versatili e sostenibili nel campo dell’edilizia efficiente dal punto di vista energetico e della gestione intelligente degli edifici. Le loro proprietà elettriche, ottiche e termiche uniche e sintonizzabili li rendono candidati ideali per lo sviluppo di sistemi adattivi e intelligenti in linea con i principi della sostenibilità ambientale e dell’economia circolare. In questo campo in rapida evoluzione, i materiali organici funzionali possono essere progettati per presentare specifiche caratteristiche chimico-fisiche, consentendo la creazione di componenti edilizi dinamici in grado di rispondere agli stimoli ambientali e ottimizzare le prestazioni energetiche. Tra queste, le piccole molecole donatore–accettore–donatore (D–A–D) si distinguono per la loro struttura elettronica ben definita, la leggerezza, la facile regolazione dei livelli energetici HOMO e LUMO e la processabilità su substrati flessibili. In questo lavoro di tesi, due classi di composti D–A–D sono state studiate per il loro potenziale nello sviluppo di materiali da costruzione intelligenti di nuova generazione: (i) semiconduttori a base di benzotieno[3,2-b][1]benzotiofene (BTBT) e benzotieno[3,2-b][1]benzotiofene tetraossido (BTBTOx₄) e (ii) colorante organico a base di croconina. BTBT e BTBTOx₄ sono nuclei planari coniugati con π basati su sistemi ad anello fuso, che presentano notevoli proprietà di trasporto di carica, rendendoli eccellenti elementi costitutivi per semiconduttori organici sia di tipo p che di tipo n. Sei nuove piccole molecole, PTZ₂-BTBT, PTZ₂-BTBTOx₄, MPA₂-BTBT, MPA₂-BTBTOx₄, POCz₂-BTBT e POCz₂-BTBTOx₄, sono state progettate e sintetizzate tramite una reazione di accoppiamento incrociato Buchwald–Hartwig assistita da microonde, con architetture D–A–D, che combinano BTBT/BTBTOx₄ come nuclei di accettazione degli elettroni e fenotiazina, bis(4-metossifenil)ammina e 3,6-bis(4-(ottilossi)fenil)-9H-carbazolo come gruppi donatori. La caratterizzazione elettrica ha rivelato una capacità di trasporto di lacune per i derivati BTBT e un comportamento di trasporto ambipolare per i derivati BTBTOx₄. Oltre alle loro capacità di trasporto di carica, i composti a base di BTBTOx₄ hanno dimostrato proprietà di fluorescenza ritardata attivata termicamente (TADF), rendendoli materiali promettenti per diodi organici a emissione di luce (OLED) ad alta efficienza. Studi teorici e fotofisici hanno confermato il loro comportamento TADF, con esperimenti di spegnimento indotto dall'ossigeno e fotoluminescenza risolta nel tempo che supportano l'emissione ritardata di fluorescenza. Tra questi, POCz₂-BTBTOx₄ ha mostrato un autoestinzione minimo e ha mantenuto un'elevata efficienza di fotoluminescenza, anche in pellicole pulite, consentendone l'integrazione in dispositivi OLED fabbricati mediante tecniche di spin-coating e stampa a getto d'inchiostro. Complementaremente, i materiali a base di croconina (CR) sono stati studiati come additivi termici organici di polimeri per modulare le proprietà termiche dell'acido poli(L-lattico) (L-PLA). È stata selezionata una croconina a base di benzoindolenina (CR-BI) con forte assorbimento NIR ed elevata affinità con le catene L-PLA per realizzare L-PLA@CR-BI pellicole composite con una colorazione uniforme da parte del CR-BI come conseguenza di una distribuzione omogenea del colorante organico all'interno della matrice polimerica. Sorprendentemente, anche a basso carico (1% in peso), il CR-BI è in grado di aumentare di oltre il 240% la diffusività termica e la conduttività del PLA, agendo come un modulatore termico molto efficiente e come un plastificante molecolare che migliora la mobilità della catena e la cristallinità. Queste caratteristiche aprono nuove opportunità per applicazioni di gestione e stoccaggio dell’energia termica in materiali da costruzione sostenibili. Nel complesso, l'integrazione di semiconduttori e compositi a base di BTBT/BTBTOx₄ esemplifica un approccio multidisciplinare alla progettazione di materiali organici funzionali in grado di combinare emissione ottica, trasporto di carica e comportamento termico regolabile. Lo studio sinergico di queste due classi di piattaforme organiche getta le basi per la prossima generazione di tecnologie edilizie intelligenti reattive, a risparmio energetico e rispettose dell’ambiente.
Functional organic materials for energy
MONTRONE, MARIA
2026
Abstract
Functional organic materials are emerging as versatile and sustainable key solutions in the field of energy-efficient construction and smart building management. Their unique and tunable electrical, optical, and thermal properties make them ideal candidates for developing adaptive and intelligent systems aligned with the principles of environmental sustainability and the circular economy. Within this rapidly evolving field, functional organic materials can be engineered to exhibit specific chemico-physical characteristics, enabling the creation of dynamic building components able to respond to environmental stimuli and optimize energy performance. Among these, donor–acceptor–donor (D–A–D) small molecules stand out due to their well-defined electronic structure, light-weight, easy tuning of HOMO and LUMO energy levels and processability on flexible substrates. In this thesis work, two classes of D–A–D compounds were investigated for their potential in developing next-generation smart building materials: (i) benzothieno[3,2-b][1]benzothiophene (BTBT)-and benzothieno[3,2-b][1]benzothiophene tetraoxide (BTBTOx₄)-based semiconductors and (ii) croconaine-based organic dye. BTBT and BTBTOx₄ are planar π-conjugated cores based on fused ring systems, that exhibit remarkable charge transport properties, making them excellent building blocks for both p-type and n-type organic semiconductors. Six new small molecules, PTz₂-BTBT, PTz₂-BTBTOx₄, MPA₂-BTBT, MPA₂-BTBTOx₄, POCz₂-BTBT, and POCz₂-BTBTOx₄, were designed and synthetized via a microwave-assisted Buchwald–Hartwig cross-coupling reaction, with D–A–D architectures, combining BTBT/BTBTOx₄ as electron-accepting cores and phenothiazine, bis(4-methoxyphenyl)amine and 3,6-bis(4-(octyloxy)phenyl)-9H-carbazole as donor groups. Electrical characterization revealed a hole-transport capability for BTBT-derivatives and ambipolar transport behavior for BTBTOx₄-derivatives. In addition to their charge-transport capabilities, BTBTOx₄-based compounds demonstrated thermally activated delayed fluorescence (TADF) properties, making them promising materials for high-efficiency organic light-emitting diodes (OLEDs). Theoretical and photophysical studies confirmed their TADF behavior, with oxygen-induced quenching experiments and time-resolved photoluminescence supporting delayed fluorescence emission. Among them, POCz₂-BTBTOx₄ exhibited minimal self-quenching and maintained high photoluminescence efficiency, even in neat films, enabling its integration into OLED devices fabricated by spin-coating and inkjet-printing techniques. Complementarily, croconaine (CR)-based materials were investigated as organic thermal additives of polymers to modulate the thermal properties of poly(L-lactic acid) (L-PLA). A benzoindolenine-based croconaine (CR-BI) with strong NIR absorption and high affinity with L-PLA chains was selected to realize L-PLA@CR-BI composite films with a uniform coloration by the CR-BI as a consequence of a homogeneous distribution of the organic dye within the polymer matrix. Remarkably, even at a low loading (1wt%), CR-BI is able of increasing by more than 240% the thermal diffusivity and conductivity of PLA, acting as a very efficient thermal modulator and as a molecular plasticizer that improves chain mobility and crystallinity. These features open new opportunities for thermal energy management and storage applications in sustainable building materials. Overall, the integration of BTBT/BTBTOx₄-based semiconductors and PLA@CR-BI composites exemplifies a multidisciplinary approach to the design of functional organic materials capable of combining optical emission, charge transport, and tunable thermal behavior. The synergistic study of these two classes of organic platforms lays the groundwork for the next generation of responsive, energy-saving, and environmentally friendly smart building technologies.| File | Dimensione | Formato | |
|---|---|---|---|
|
38 ciclo-MONTRONE Maria.pdf
accesso aperto
Licenza:
Tutti i diritti riservati
Dimensione
9.91 MB
Formato
Adobe PDF
|
9.91 MB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/354827
URN:NBN:IT:POLIBA-354827