Thermal ablation is one of the most advanced techniques for minimally invasive cancer treatment, leveraging externally generated heat to induce necrosis in tumor tissues. Among the most promising techniques, microwave ablation (MWA) and magnetic hyperthermia therapy (MHT) offer significant advantages over traditional methodologies, including faster treatment times, reduced invasiveness, and lower sensitivity to the heat sink effect. However, the clinical effectiveness of these procedures remains constrained by the inability to precisely predict temperature distribution and subsequent tissue damage. Multiphysics computational modeling, combined with experimental validation, can provide essential predictive tools to enhance the safety and efficacy of thermal ablation. This thesis develops and evaluates advanced mathematical models to describe the thermal dynamics of MWA and MHT, with the goal of optimizing the prediction of ablation zones and improving the understanding of heat transfer mechanisms in biological tissues. For MWA, three primary models were analyzed: local thermal equilibrium (LTE), local thermal non-equilibrium (LTNE), and Pennes' bioheat transfer equation. These models were applied in numerical simulations and compared with ex vivo and in vivo experimental data, considering the effects of blood perfusion, antenna design, and variations in tissue thermal properties. The results showed that the LTNE model, which separately accounts for heat transfer between the solid and fluid phases of the tissue, provides the most accurate predictions, with an average deviation from experimental data of less than 7%. For magnetic hyperthermia, the thesis developed a compartmental model coupled with mass and heat transport simulations to study the distribution of magnetic nanoparticles (MNPs) within tumor tissues and their impact on heat generation. Various administration protocols and different magnetic field intensities were examined to assess the effect of nanoparticle concentration on tissue thermal response. Again, the LTNE model proved to be the most effective in predicting temperature distribution and tissue damage fraction, with an average deviation of only 2.6°C from experimental data. Finally, the research developed transfer functions to correlate ex vivo lesion sizes with in vivo outcomes, enhancing the ability to predict actual ablation in patients. This methodology has the potential to optimize clinical protocols for thermal ablation, enabling treatment personalization based on patient-specific physiological characteristics and reducing the risk of incomplete ablation or damage to surrounding healthy tissues. The integration of computational modeling and experimental validation represents a crucial step toward the personalization of thermal ablation in cancer treatment. The results of this thesis provide a significant contribution to the development of more accurate predictive tools, with important implications for precision medicine and the optimization of thermal ablation procedures.
La termoablazione rappresenta una delle tecniche più avanzate per il trattamento minimamente invasivo del cancro, sfruttando il calore generato da fonti energetiche esterne per indurre necrosi nei tessuti tumorali. Tra le tecniche più promettenti, l'ablazione a microonde (MWA) e l’ipertermia magnetica (MHT) offrono vantaggi significativi rispetto alle metodologie tradizionali, come una maggiore rapidità di trattamento, una minore invasività e una ridotta sensibilità all'effetto heat sink. Tuttavia, l’efficacia clinica di queste procedure è ancora limitata dall’incapacità di prevedere con precisione la distribuzione della temperatura e il conseguente danno tissutale. La modellizzazione computazionale multifisica, combinata con la validazione sperimentale, può fornire strumenti predittivi fondamentali per migliorare la sicurezza e l’efficacia della termoablazione. Questa tesi sviluppa e testa modelli matematici avanzati per descrivere le dinamiche termiche dell’MWA e della MHT, con l’obiettivo di ottimizzare la predizione delle zone di ablazione e migliorare la comprensione dei meccanismi di trasferimento di calore nei tessuti biologici. Per la MWA, sono stati analizzati tre modelli principali: l’equilibrio termico locale (LTE), il disequilibrio termico locale (LTNE) e il modello bioheat di Pennes. Questi modelli sono stati applicati in simulazioni numeriche e confrontati con dati sperimentali ex vivo e in vivo, considerando l’effetto della perfusione sanguigna, la progettazione dell’antenna e la variazione delle proprietà termiche del tessuto. I risultati hanno evidenziato che il modello LTNE, che considera separatamente il trasferimento di calore tra la fase solida e la fase fluida del tessuto, offre la migliore accuratezza predittiva, con uno scostamento medio dai dati sperimentali inferiore al 7%. Per l’ipertermia magnetica, la tesi ha sviluppato un modello compartimentale accoppiato con simulazioni di trasporto di massa e calore, al fine di studiare la distribuzione delle nanoparticelle magnetiche (MNP) nei tessuti tumorali e il loro impatto sulla generazione di calore. Sono stati esaminati diversi protocolli di somministrazione e differenti intensità di campo magnetico per valutare l’effetto della concentrazione delle nanoparticelle sulla risposta termica del tessuto. Anche in questo caso, il modello LTNE si è dimostrato il più efficace nel prevedere la distribuzione della temperatura e la frazione di danno tissutale, con una differenza media rispetto ai dati sperimentali di soli 2.6°C. Infine, la ricerca ha sviluppato funzioni di trasferimento per correlare le dimensioni delle lesioni ex vivo con quelle in vivo, migliorando la capacità di predire l’ablazione effettiva nei pazienti. Questa metodologia ha il potenziale di ottimizzare il protocollo clinico per la termoablazione, consentendo di personalizzare il trattamento in base alle caratteristiche fisiologiche del paziente e riducendo il rischio di ablazioni incomplete o danni ai tessuti sani circostanti. L’integrazione di modellizzazione computazionale e validazione sperimentale rappresenta un passo fondamentale verso la personalizzazione della termoablazione nel trattamento oncologico. I risultati di questa tesi forniscono un contributo significativo allo sviluppo di strumenti predittivi più accurati, con implicazioni importanti per la medicina di precisione e l’ottimizzazione delle procedure di termoablazione.
Integrative multiphysics computational modeling and experimental validation of thermal ablation mechanism. Optimizing the efficacy of microwave ablation and magnetic hyperthermia for precision cancer treatment
CAFARCHIO, Andrea
2025
Abstract
Thermal ablation is one of the most advanced techniques for minimally invasive cancer treatment, leveraging externally generated heat to induce necrosis in tumor tissues. Among the most promising techniques, microwave ablation (MWA) and magnetic hyperthermia therapy (MHT) offer significant advantages over traditional methodologies, including faster treatment times, reduced invasiveness, and lower sensitivity to the heat sink effect. However, the clinical effectiveness of these procedures remains constrained by the inability to precisely predict temperature distribution and subsequent tissue damage. Multiphysics computational modeling, combined with experimental validation, can provide essential predictive tools to enhance the safety and efficacy of thermal ablation. This thesis develops and evaluates advanced mathematical models to describe the thermal dynamics of MWA and MHT, with the goal of optimizing the prediction of ablation zones and improving the understanding of heat transfer mechanisms in biological tissues. For MWA, three primary models were analyzed: local thermal equilibrium (LTE), local thermal non-equilibrium (LTNE), and Pennes' bioheat transfer equation. These models were applied in numerical simulations and compared with ex vivo and in vivo experimental data, considering the effects of blood perfusion, antenna design, and variations in tissue thermal properties. The results showed that the LTNE model, which separately accounts for heat transfer between the solid and fluid phases of the tissue, provides the most accurate predictions, with an average deviation from experimental data of less than 7%. For magnetic hyperthermia, the thesis developed a compartmental model coupled with mass and heat transport simulations to study the distribution of magnetic nanoparticles (MNPs) within tumor tissues and their impact on heat generation. Various administration protocols and different magnetic field intensities were examined to assess the effect of nanoparticle concentration on tissue thermal response. Again, the LTNE model proved to be the most effective in predicting temperature distribution and tissue damage fraction, with an average deviation of only 2.6°C from experimental data. Finally, the research developed transfer functions to correlate ex vivo lesion sizes with in vivo outcomes, enhancing the ability to predict actual ablation in patients. This methodology has the potential to optimize clinical protocols for thermal ablation, enabling treatment personalization based on patient-specific physiological characteristics and reducing the risk of incomplete ablation or damage to surrounding healthy tissues. The integration of computational modeling and experimental validation represents a crucial step toward the personalization of thermal ablation in cancer treatment. The results of this thesis provide a significant contribution to the development of more accurate predictive tools, with important implications for precision medicine and the optimization of thermal ablation procedures.| File | Dimensione | Formato | |
|---|---|---|---|
|
Tesi_A_Cafarchio.pdf
embargo fino al 08/01/2027
Licenza:
Tutti i diritti riservati
Dimensione
10.07 MB
Formato
Adobe PDF
|
10.07 MB | Adobe PDF |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/354923
URN:NBN:IT:UNIMOL-354923