Autism Spectrum Disorder (ASD) is a neurodevelopmental condition characterized by deficits in social communication and the presence of restricted and repetitive behaviours. In Italy, approximately one in 77 children (aged 7–9 years) is diagnosed with ASD, with a male prevalence 4.4 times higher than females (Hirota, 2023). Research suggests that abnormal neural development and impaired synaptic plasticity contribute to ASD, particularly affecting the prefrontal cortex, a key region for social, emotional, and cognitive functions (Courchesne, 2023). The Predictive Impairment in Autism (PIA) hypothesis states that difficulties in estimating conditional probabilities underlie ASD-related deficits in social and communication abilities. These predictive impairments can be assessed through event-related potentials (ERP), which measures brain activity in the sensory, premotor, and prefrontal areas (Di Russo, 2019). Some studies suggest a correlation between executive function deficits and ASD-related behaviours. Consequently, interventions targeting the development of executive functions may positively influence higher-order executive functions, particularly those related to planning and organization, which are essential for effective communication and comprehension of the surrounding environment (Fong & Iarocci, 2020; Leung et al., 2016). Deficits in ASD impact daily functioning, limiting participation in social activities. Therefore, the treatment of cognitive and motor functions is the focus of ASD treatments in order to increase ASD children’s life quality. Studies suggest that after physical activity treatments, children with ASD showed overall improvements in motor skills, psychological well-being, and social interaction (Tu, 2023; Tse, 2023). However, standardized guidelines for long-term physical activity interventions are lacking. A promising approach is Cognitive-Motor Dual-Task Training (CMDT), which combines simultaneous cognitive and physical exercises. Studies show that CMDT enhances executive functions, motor coordination, and response accuracy, making it a more effective intervention than physical training alone for mitigating ASD symptoms (Nekar et al., 2022; Firouzjah, 2025). The first phase of the study aims to examine differences in predictive processes between children with ASD and typically developing (TD) children, while the second phase evaluates the effectiveness of a 12-week CMDT program in enhancing these skills in children with ASD. Ten children with ASD - level 1 or 2, according to DSM-5 criteria- and ten TD children were recruited. In the first phase of the study, which employed a cross-sectional design, children with ASD and TD matched for age were assessed through EEG recordings during a Simple Reaction Task (SRT) to investigate potential alterations in predictive processing mechanisms. In the second phase, employing a non-randomized pre-post design, the effectiveness of a 12-week CMDT program specifically designed by the authors was evaluated in children with ASD. EEG recordings were used to analyze changes in event-related potentials (ERP), focusing on the P3 component, associated with cognitive resource allocation, and the Bereitschaftspotential (BP), linked to motor preparation. For the assessment of cognitive and motor functions, the following test batteries were administered: the Children’s Color Trails Test (CCTT) to measure attention, cognitive flexibility, and visuomotor skills; the Tower of London Test (ToL) to evaluate planning abilities and problem-solving skills; and the Movement Assessment Battery for Children – Second Edition (MABC-2) to analyze fundamental motor skills. Additionally, parents of the participants completed standardized questionnaires to assess the children's behavioral and psychological profiles. These included the Social Communication Questionnaire (SCQ), which evaluates social communication abilities and the presence of ASD-related behaviors; the Anxiety Scale for Children – Autism Spectrum Disorder (ASC-ASD), designed to measure anxiety levels specific to children with ASD; the Children’s Sleep Habits Questionnaire – Short Form (CSHQ), used to analyze sleep disturbances; and the Behavior Rating Inventory of Executive Function – Second Edition (BRIEF-2), which assesses executive functions across different contexts in daily life. The statistical analysis aimed to compare behavioral and electrophysiological differences between the study groups (ASD vs. TD) and to assess changes between pre-test and post-test conditions. A 2×2 mixed-design Analysis of Variance (ANOVA) was conducted for the analysis of EEG and behavioral data, with Time (pre-test vs. post-test) as the within-subjects factor and Group (ASD vs. TD) as the between-subjects factor. The dependent variables included mean reaction time (RT), response accuracy, and mean ERP amplitudes. ERP components were analyzed within predefined pre- and post-stimulus time windows, and electrode selection was based on the statistical significance of mean amplitudes (p < 0.05). To mitigate Type I error, Bonferroni correction was applied. For the analysis of cognitive and motor performance (M ABC-2, CCTT, ToL), a repeated measures multivariate analysis of variance (RM-MANOVA) was conducted to assess within-group improvements over time in the ASD group. An additional RM-MANOVA, including the TD group as a control, was performed to determine whether pre-post intervention differences could be attributed to external factors, such as learning effects. To further investigate between-group differences, a one-way Analysis of Variance (One-way ANOVA) was conducted to compare baseline and post-intervention scores between the two groups. The parent-reported questionnaires (SCQ, ASC-ASD, CSHQ, BRIEF-2) were analyzed using a Repeated Measures Analysis of Variance (RM-ANOVA) to evaluate changes in pre- and post-intervention scores. Furthermore, parental assessment differences (father vs. mother) were included as a between-subjects factor to examine potential differences in reporting. In the Simple Reaction Task, the ASD group showed a significant improvement in response times in the post-test (p > 0.01), whereas no changes were observed in the TD group. In the pre-test, the ASD group demonstrated significantly slower response times compared to the TD group (p > 0.05); however, this difference was no longer significant post-intervention. Additionally, a significant Group × Time interaction was found (p > 0.05). Accuracy remained lower in ASD (p < 0.05) without significant changes over time. In the ASD group, the pre-stimulus ERP components BP and vN showed a significant post-intervention increase in amplitude (p < 0.05), suggesting enhanced motor preparation and anticipatory processing. In the pre-test, amplitudes were significantly lower than those observed in the TD group (p < 0.05); however, no significant between-group differences were detected in the post-test. Among the post-stimulus ERP components, N1 amplitude was significantly greater in the ASD group compared to the TD group (p < 0.01) and showed a significant post-intervention increase (p < 0.05), suggesting enhancements in sensory processing. Similarly, P3, associated with cognitive resource allocation, showed a significant increase in the ASD group following the intervention (p < 0.01), although its amplitude remained lower than that observed in the TD group (p < 0.01). The Group × Time interaction was significant for both components (p < 0.05), indicating improvements in cognitive. P1 showed no significant differences. In motor assessments, significant motor skill improvement (MABC-2, p = 0.001) was found in the ASD group, with a more pronounced effect than in the TD group. No significant improvements were found in ToL (p = 0.459) or CCTT (p = 0.119), except for a significant improvement in CCTT Trial 1 (p = 0.028). Although variations over time and between groups were found (p = 0.0499), the Group × Time interaction was not significant. Although ASD and TD groups differed significantly at baseline, post-intervention differences were reduced, suggesting a partial normalization of cognitive-motor performance in the ASD group. No significant changes over time or between father-mother ratings. In conclusion, these findings support the effectiveness of CMDT in enhancing sensorimotor integration in children with ASD, promoting anticipatory processing and cognitive-motor performance.
Il Disturbo dello Spettro Autistico (ASD) è una condizione neuro evolutiva caratterizzata da deficit nella comunicazione sociale e dalla presenza di comportamenti ripetitivi e ristretti. In Italia, circa un bambino su 77 (di età compresa tra 7 e 9 anni) riceve una diagnosi di ASD, con una prevalenza maschile 4,4 volte superiore rispetto a quella femminile (Hirota, 2023). La ricerca suggerisce che uno sviluppo neurale anomalo e una compromissione della plasticità sinaptica contribuiscano all'ASD, in particolare influenzando lo sviluppo della corteccia prefrontale, una regione chiave per le funzioni sociali, emotive e cognitive (Courchesne, 2023). L'ipotesi dell'Alterazione Predittiva nell'Autismo (PIA) sostiene che le difficoltà nel calcolo delle probabilità siano alla base dei deficit sociali e comunicativi associati all'ASD. Tali alterazioni predittive possono essere valutate attraverso i potenziali evento-correlati (ERP), che misurano l'attività cerebrale nelle aree sensoriali, premotorie e prefrontali (Di Russo, 2019). Alcuni studi suggeriscono una correlazione tra i deficit delle funzioni esecutive e i comportamenti tipici dell'ASD. Pertanto, interventi mirati allo sviluppo delle funzioni esecutive potrebbero avere un impatto positivo sulle funzioni di ordine superiore, in particolare su pianificazione e organizzazione, che sono essenziali per una comunicazione efficace e per una giusta relazione con l'ambiente circostante (Fong & Iarocci, 2020; Leung et al., 2016). I deficit associati all'ASD influenzano le funzioni quotidiane, causando difficoltà nella partecipazione ad attività di gruppo e nello sviluppo sociale. Per questo motivo, il trattamento delle funzioni cognitive e motorie rappresenta un obiettivo chiave per migliorare la qualità della vita dei bambini con ASD. Studi dimostrano che, dopo trattamenti basati sull'attività fisica, i bambini con ASD presentano miglioramenti nelle abilità motorie fondamentali, nel benessere psicologico e nell’interazione sociale (Tu, 2023; Tse, 2023). Tuttavia, mancano ancora linee guida standardizzate per interventi di lunga durata basati sull'attività fisica. Un approccio promettente si è dimostrato il training cognitivo-motorio dual task (CMDT), che combina esercizi fisici ed esercizi cognitivi in forma simultanea. Studi dimostrano che il CMDT migliora le funzioni esecutive, la coordinazione motoria e l'accuratezza della risposta, efficace nel mitigare i sintomi dell’ASD (Nekar et al., 2022; Firouzjah, 2025). La prima fase di studio si propone di esaminare le differenze nei processi predittivi tra bambini ASD e bambini a sviluppo tipico (TD), la seconda fase di valutare l’efficacia di 12 settimane di un nuovo programma CMDT per potenziare queste abilità nei bambini con ASD. Sono stati reclutati 10 bambini con ASD di livello 1 o 2, in base ai criteri del DSM-5, e 10 bambini TD. Nella prima fase di studio, di tipo trasversale (cross-sectional), sono stati messi a confronto bambini con ASD e TD, di pari età, attraverso registrazioni EEG durante compiti cognitivi (simple reaction task) per individuare eventuali anomalie nei meccanismi predittivi. Nella seconda fase, con un disegno pre-post non randomizzato, è stata valutata l'efficacia di un programma CMDT di 12 settimane nei bambini con ASD, specificatamente ideata dagli autori, analizzando tramite EEG i cambiamenti nei potenziali evento-correlati (ERP), in particolare la componente P3, legata all’allocazione delle risorse cognitive, e il Bereitschaftspotential (BP), associato alla preparazione motoria. Per la valutazione delle funzioni cognitive e motorie, inoltre sono stati utilizzate le seguenti batterie di test: Children's Color Trails Test (CCTT) per misurare l'attenzione, la flessibilità cognitiva e le abilità visuomotorie, il Tower of London Test (ToL) per valutare la pianificazione e capacità di problem-solving, e il Movement Assessment Battery for Children – Second Edition (MABC-2) per analizzare le principali capacità motorie. I genitori dei partecipanti hanno inoltre compilato questionari standardizzati per valutare il profilo comportamentale e psicologico dei bambini, tra cui: Social Communication Questionnaire (SCQ) per valutare le abilità di comunicazione sociale e la presenza di comportamenti tipici dell’ASD, Anxiety Scale for Children – Autism Spectrum Disorder (ASC-ASD) per misurare i livelli di ansia specifici nei bambini con ASD, Children’s Sleep Habits Questionnaire – Short Form (CSHQ) per l’analisi dei disturbi del sonno, infine il Behavior Rating Inventory of Executive Function – Second Edition (BRIEF-2) per la valutazione delle funzioni esecutive in diversi contesti di vita quotidiana. L’analisi statistica è stata condotta per confrontare le differenze comportamentali ed elettrofisiologiche tra i gruppi di studio (ASD vs. TD) e per valutare i cambiamenti tra le condizioni di pre-test e post-test. Per l’analisi dei dati EEG e comportamentali, è stata utilizzata un’Analisi della Varianza (ANOVA) mista 2x2, con il fattore intra-soggetti Tempo (pre-test vs. post-test) e il fattore tra-soggetti Gruppo (ASD vs. TD). Le variabili dipendenti includevano: il tempo di risposta medio (RT), l’accuratezza delle risposte, le ampiezze medie dei ERP. Gli ERP sono stati analizzati su specifici intervalli temporali pre- e post-stimolo, e gli elettrodi inclusi nell’analisi sono stati selezionati sulla base della significatività statistica delle ampiezze medie (p<0,05). Per il controllo dell’errore di tipo I è stata applicata la correzione di Bonferroni. Per l’analisi delle prestazioni nei test cognitivi e motori (M ABC-2, CCTT, ToL) è stata usata l’analisi della varianza multivariata per misure ripetute (RM-MANOVA) per valutare i miglioramenti nel tempo all’interno del gruppo ASD. Un'ulteriore RM-MANOVA con il gruppo TD come controllo ha permesso di verificare se le differenze pre-post intervento fossero attribuibili a fattori indipendenti dall’intervento, come effetti di apprendimento. Per approfondire le differenze tra i gruppi, è stata condotta un’Analisi della Varianza a una via (One-way ANOVA) per confrontare i punteggi di baseline e post-intervento nei due gruppi. I questionari compilati dai genitori (SCQ, ASC-ASD, CSHQ, BRIEF-2) sono stati analizzati utilizzando una Analisi della Varianza per Misure Ripetute (RM-ANOVA) per confrontare i punteggi pre- e post-intervento, considerando inoltre eventuali differenze tra le valutazioni dei due genitori (padre vs. madre) come fattore tra i soggetti. Nella Simple Reaction Task, è stato evidenziato un miglioramento significativo nei tempi di risposta nel gruppo ASD nel post-test (p>0.01), mentre il gruppo TD è rimasto stabile. Nel pre-test, il gruppo ASD ha mostrato tempi di risposta significativamente più lenti rispetto al gruppo TD (p>0.05); tuttavia, nel post-test, questa differenza tra i gruppi non è risultata significativa. Inoltre è stata rilevata un’interazione significativa Gruppo/Tempo (p>0.05). L’accuratezza è risultata significativamente inferiore nel gruppo ASD rispetto al gruppo TD (p>0.05) e non ha mostrato variazioni significative nel tempo. Nel gruppo ASD, le componenti ERP pre-stimolo BP e vN hanno mostrato un aumento significativo dell’ampiezza dopo l’intervento (p < 0.05), indicando un miglioramento nei meccanismi di preparazione motoria e processi anticipatori. Nel pre-test, le ampiezze erano inferiori rispetto al gruppo TD (p < 0.05), ma nel post-test non sono emerse differenze tra i gruppi. Tra le componenti post-stimolo, l’ampiezza della N1 era maggiore nel gruppo ASD rispetto al TD (p < 0.01) e ha mostrato un incremento significativo dopo l’intervento (p < 0.05), suggerendo miglioramenti nell’elaborazione sensoriale. Anche la P3, legata all’allocazione delle risorse cognitive, è aumentata significativamente nel gruppo ASD (p < 0.01), pur rimanendo inferiore rispetto al gruppo TD (p < 0.01). L’interazione Gruppo*Tempo è risultata significativa per entrambe (p < 0.05), indicando progressi nei processi cognitivi. La P1 non ha mostrato variazioni rilevanti. Nei test motori, i punteggi del MABC-2 sono migliorati significativamente nel gruppo ASD (p=0.001), con un effetto più marcato rispetto al gruppo TD, confermando progressi nelle abilità motorie. Non sono state rilevate differenze significative per il ToL (p=0.459) e il CCTT (p=0.119), ad eccezione di un miglioramento nel Trial 1 del CCTT (p=0.028). Sebbene siano emerse variazioni nel tempo e tra i gruppi (p=0.0499), l’interazione Gruppo*Tempo non è risultata significativa. Infine, sebbene i due gruppi fossero significativamente diversi all’inizio dello studio in diverse variabili, alcune di queste differenze non erano più presenti dopo l’intervento, suggerendo un effetto di “normalizzazione” nei punteggi del gruppo ASD. I questionari non hanno evidenziato differenze significative nel tempo né nel confronto dei risultati delle madri e dei padri. Questi risultati supportano l'efficacia della CMDT nel migliorare l'integrazione sensomotoria nei bambini con ASD, favorendo l'elaborazione anticipatoria e la performance cognitivo-motoria.
Studio dei correlati neurali in risposta a un intervento di allenamento cognitivo-motorio in bambini con Disturbo dello Spettro Autistico
DI MARTINO, Giulia
2025
Abstract
Autism Spectrum Disorder (ASD) is a neurodevelopmental condition characterized by deficits in social communication and the presence of restricted and repetitive behaviours. In Italy, approximately one in 77 children (aged 7–9 years) is diagnosed with ASD, with a male prevalence 4.4 times higher than females (Hirota, 2023). Research suggests that abnormal neural development and impaired synaptic plasticity contribute to ASD, particularly affecting the prefrontal cortex, a key region for social, emotional, and cognitive functions (Courchesne, 2023). The Predictive Impairment in Autism (PIA) hypothesis states that difficulties in estimating conditional probabilities underlie ASD-related deficits in social and communication abilities. These predictive impairments can be assessed through event-related potentials (ERP), which measures brain activity in the sensory, premotor, and prefrontal areas (Di Russo, 2019). Some studies suggest a correlation between executive function deficits and ASD-related behaviours. Consequently, interventions targeting the development of executive functions may positively influence higher-order executive functions, particularly those related to planning and organization, which are essential for effective communication and comprehension of the surrounding environment (Fong & Iarocci, 2020; Leung et al., 2016). Deficits in ASD impact daily functioning, limiting participation in social activities. Therefore, the treatment of cognitive and motor functions is the focus of ASD treatments in order to increase ASD children’s life quality. Studies suggest that after physical activity treatments, children with ASD showed overall improvements in motor skills, psychological well-being, and social interaction (Tu, 2023; Tse, 2023). However, standardized guidelines for long-term physical activity interventions are lacking. A promising approach is Cognitive-Motor Dual-Task Training (CMDT), which combines simultaneous cognitive and physical exercises. Studies show that CMDT enhances executive functions, motor coordination, and response accuracy, making it a more effective intervention than physical training alone for mitigating ASD symptoms (Nekar et al., 2022; Firouzjah, 2025). The first phase of the study aims to examine differences in predictive processes between children with ASD and typically developing (TD) children, while the second phase evaluates the effectiveness of a 12-week CMDT program in enhancing these skills in children with ASD. Ten children with ASD - level 1 or 2, according to DSM-5 criteria- and ten TD children were recruited. In the first phase of the study, which employed a cross-sectional design, children with ASD and TD matched for age were assessed through EEG recordings during a Simple Reaction Task (SRT) to investigate potential alterations in predictive processing mechanisms. In the second phase, employing a non-randomized pre-post design, the effectiveness of a 12-week CMDT program specifically designed by the authors was evaluated in children with ASD. EEG recordings were used to analyze changes in event-related potentials (ERP), focusing on the P3 component, associated with cognitive resource allocation, and the Bereitschaftspotential (BP), linked to motor preparation. For the assessment of cognitive and motor functions, the following test batteries were administered: the Children’s Color Trails Test (CCTT) to measure attention, cognitive flexibility, and visuomotor skills; the Tower of London Test (ToL) to evaluate planning abilities and problem-solving skills; and the Movement Assessment Battery for Children – Second Edition (MABC-2) to analyze fundamental motor skills. Additionally, parents of the participants completed standardized questionnaires to assess the children's behavioral and psychological profiles. These included the Social Communication Questionnaire (SCQ), which evaluates social communication abilities and the presence of ASD-related behaviors; the Anxiety Scale for Children – Autism Spectrum Disorder (ASC-ASD), designed to measure anxiety levels specific to children with ASD; the Children’s Sleep Habits Questionnaire – Short Form (CSHQ), used to analyze sleep disturbances; and the Behavior Rating Inventory of Executive Function – Second Edition (BRIEF-2), which assesses executive functions across different contexts in daily life. The statistical analysis aimed to compare behavioral and electrophysiological differences between the study groups (ASD vs. TD) and to assess changes between pre-test and post-test conditions. A 2×2 mixed-design Analysis of Variance (ANOVA) was conducted for the analysis of EEG and behavioral data, with Time (pre-test vs. post-test) as the within-subjects factor and Group (ASD vs. TD) as the between-subjects factor. The dependent variables included mean reaction time (RT), response accuracy, and mean ERP amplitudes. ERP components were analyzed within predefined pre- and post-stimulus time windows, and electrode selection was based on the statistical significance of mean amplitudes (p < 0.05). To mitigate Type I error, Bonferroni correction was applied. For the analysis of cognitive and motor performance (M ABC-2, CCTT, ToL), a repeated measures multivariate analysis of variance (RM-MANOVA) was conducted to assess within-group improvements over time in the ASD group. An additional RM-MANOVA, including the TD group as a control, was performed to determine whether pre-post intervention differences could be attributed to external factors, such as learning effects. To further investigate between-group differences, a one-way Analysis of Variance (One-way ANOVA) was conducted to compare baseline and post-intervention scores between the two groups. The parent-reported questionnaires (SCQ, ASC-ASD, CSHQ, BRIEF-2) were analyzed using a Repeated Measures Analysis of Variance (RM-ANOVA) to evaluate changes in pre- and post-intervention scores. Furthermore, parental assessment differences (father vs. mother) were included as a between-subjects factor to examine potential differences in reporting. In the Simple Reaction Task, the ASD group showed a significant improvement in response times in the post-test (p > 0.01), whereas no changes were observed in the TD group. In the pre-test, the ASD group demonstrated significantly slower response times compared to the TD group (p > 0.05); however, this difference was no longer significant post-intervention. Additionally, a significant Group × Time interaction was found (p > 0.05). Accuracy remained lower in ASD (p < 0.05) without significant changes over time. In the ASD group, the pre-stimulus ERP components BP and vN showed a significant post-intervention increase in amplitude (p < 0.05), suggesting enhanced motor preparation and anticipatory processing. In the pre-test, amplitudes were significantly lower than those observed in the TD group (p < 0.05); however, no significant between-group differences were detected in the post-test. Among the post-stimulus ERP components, N1 amplitude was significantly greater in the ASD group compared to the TD group (p < 0.01) and showed a significant post-intervention increase (p < 0.05), suggesting enhancements in sensory processing. Similarly, P3, associated with cognitive resource allocation, showed a significant increase in the ASD group following the intervention (p < 0.01), although its amplitude remained lower than that observed in the TD group (p < 0.01). The Group × Time interaction was significant for both components (p < 0.05), indicating improvements in cognitive. P1 showed no significant differences. In motor assessments, significant motor skill improvement (MABC-2, p = 0.001) was found in the ASD group, with a more pronounced effect than in the TD group. No significant improvements were found in ToL (p = 0.459) or CCTT (p = 0.119), except for a significant improvement in CCTT Trial 1 (p = 0.028). Although variations over time and between groups were found (p = 0.0499), the Group × Time interaction was not significant. Although ASD and TD groups differed significantly at baseline, post-intervention differences were reduced, suggesting a partial normalization of cognitive-motor performance in the ASD group. No significant changes over time or between father-mother ratings. In conclusion, these findings support the effectiveness of CMDT in enhancing sensorimotor integration in children with ASD, promoting anticipatory processing and cognitive-motor performance.| File | Dimensione | Formato | |
|---|---|---|---|
|
Tesi_G_Di-Martino.pdf
accesso aperto
Licenza:
Tutti i diritti riservati
Dimensione
2.07 MB
Formato
Adobe PDF
|
2.07 MB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/355246
URN:NBN:IT:UNIMOL-355246