Respiratory diseases (RD) constitute a major global health challenge, contributing significantly to morbidity and mortality. Conventional diagnostic techniques, including spirometry, imaging, and lung function tests, often suffer from limitations such as invasiveness, cost, and the need for specialized infrastructure. In contrast, breath analysis has emerged as a promising, non-invasive diagnostic alternative, leveraging volatile organic compounds (VOCs) as biomarkers of disease. Among breath analysis techniques, electronic nose (e-nose) technology utilizes sensor arrays and pattern recognition algorithms to detect disease-specific VOC signatures. This dissertation investigates the application of e-nose technology for RD diagnosis, focusing on both clinical feasibility and technical limitations. The first section presents preclinical and clinical studies demonstrating the efficacy of e-noses in disease detection. A clinical study on SARS-CoV-2 patients achieved 81% accuracy in distinguishing infected individuals, while an animal model of sepsis enabled early disease identification before the onset of symptoms. However, these studies also exposed critical challenges, including sample instability, environmental variability, and prolonged analysis times. To address these constraints, the second section introduces innovations in sensor readout methodologies and system design. A novel sensor signal processing framework was developed to enhance the accuracy and reproducibility of VOC detection, mitigating sensor drift and cross-sensitivity. Additionally, a humidity control system was implemented to accelerate sample preparation, and a direct exhaled breath analysis protocol was designed to minimize contamination risks and improve real-time applicability. These advancements collectively improved the reliability, sensitivity, and specificity of e-nose-based diagnostics. In conclusion, this work advances the field of breathomics by refining sensor readout strategies and addressing key technological barriers, paving the way for a clinically viable e-nose system for non-invasive respiratory disease detection.
Le malattie respiratorie (RD) rappresentano una delle principali sfide per la salute globale, contribuendo in modo significativo alla morbilità e alla mortalità. Le tecniche diagnostiche convenzionali, come la spirometria, l’imaging e i test di funzionalità polmonare, presentano spesso limitazioni legate all’invasività, ai costi e alla necessità di infrastrutture specializzate. In contrasto, l’analisi del respiro si è affermata come un’alternativa diagnostica promettente e non invasiva, sfruttando i composti organici volatili (VOC) come biomarcatori di malattia. Tra le tecniche di analisi del respiro, la tecnologia del naso elettronico (e-nose) utilizza matrici di sensori e algoritmi di riconoscimento di pattern per rilevare firme VOC specifiche della malattia. Questa tesi esplora l’applicazione della tecnologia e-nose per la diagnosi delle RD, concentrandosi sia sulla fattibilità clinica che sui limiti tecnici. La prima sezione presenta studi preclinici e clinici che dimostrano l’efficacia dei nasi elettronici nel rilevamento delle malattie. Uno studio clinico su pazienti affetti da SARS-CoV-2 ha raggiunto un’accuratezza dell’81% nell’identificare i soggetti infetti, mentre un modello animale di sepsi ha permesso di identificare precocemente la malattia prima della comparsa dei sintomi. Tuttavia, questi studi hanno anche messo in luce sfide critiche, come l’instabilità dei campioni, la variabilità ambientale e i tempi di analisi prolungati. Per affrontare tali criticità, la seconda sezione introduce innovazioni nelle metodologie di lettura dei sensori e nel design del sistema. È stato sviluppato un nuovo framework per l’elaborazione del segnale dei sensori, volto a migliorare l’accuratezza e la riproducibilità del rilevamento dei VOC, riducendo il drift dei sensori e la cross-sensibilità. Inoltre, è stato implementato un sistema di controllo dell’umidità per accelerare la preparazione dei campioni, e un protocollo di analisi diretta del respiro espirato è stato progettato per minimizzare i rischi di contaminazione e migliorare l’applicabilità in tempo reale. Questi progressi hanno complessivamente migliorato l’affidabilità, la sensibilità e la specificità della diagnostica basata su naso elettronico. In conclusione, questo lavoro contribuisce all’avanzamento del campo della breathomica perfezionando le strategie di lettura dei sensori e affrontando le principali barriere tecnologiche, aprendo la strada a un sistema e-nose clinicamente valido per la diagnosi non invasiva delle malattie respiratorie.
Development of an electronic nose system for exhaled breath analysis
Stefano, Robbiani
2025
Abstract
Respiratory diseases (RD) constitute a major global health challenge, contributing significantly to morbidity and mortality. Conventional diagnostic techniques, including spirometry, imaging, and lung function tests, often suffer from limitations such as invasiveness, cost, and the need for specialized infrastructure. In contrast, breath analysis has emerged as a promising, non-invasive diagnostic alternative, leveraging volatile organic compounds (VOCs) as biomarkers of disease. Among breath analysis techniques, electronic nose (e-nose) technology utilizes sensor arrays and pattern recognition algorithms to detect disease-specific VOC signatures. This dissertation investigates the application of e-nose technology for RD diagnosis, focusing on both clinical feasibility and technical limitations. The first section presents preclinical and clinical studies demonstrating the efficacy of e-noses in disease detection. A clinical study on SARS-CoV-2 patients achieved 81% accuracy in distinguishing infected individuals, while an animal model of sepsis enabled early disease identification before the onset of symptoms. However, these studies also exposed critical challenges, including sample instability, environmental variability, and prolonged analysis times. To address these constraints, the second section introduces innovations in sensor readout methodologies and system design. A novel sensor signal processing framework was developed to enhance the accuracy and reproducibility of VOC detection, mitigating sensor drift and cross-sensitivity. Additionally, a humidity control system was implemented to accelerate sample preparation, and a direct exhaled breath analysis protocol was designed to minimize contamination risks and improve real-time applicability. These advancements collectively improved the reliability, sensitivity, and specificity of e-nose-based diagnostics. In conclusion, this work advances the field of breathomics by refining sensor readout strategies and addressing key technological barriers, paving the way for a clinically viable e-nose system for non-invasive respiratory disease detection.| File | Dimensione | Formato | |
|---|---|---|---|
|
Robbiani_PhD_Thesis_Final.pdf
accesso solo da BNCF e BNCR
Licenza:
Tutti i diritti riservati
Dimensione
7.79 MB
Formato
Adobe PDF
|
7.79 MB | Adobe PDF |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/356093
URN:NBN:IT:POLIMI-356093