Microfluidic devices have emerged as powerful tools in a wide range of applications branching from engineering to biomedicine offering novel approaches to solve diverse sets of issues. In chemistry, in particular, microfluidic systems offer advantages linked to their micrometric scale leading to the minimization of materials, and enhanced control of parameters. Chapter 1 provides an overview of the field of microfluidics; discussing materials used in their fabrication and their production techniques highlighting 3D printing as an innovative method to obtain microfluidic devices. Furthermore, the applications in three principal fields namely separation sciences, nanoparticle synthesis, and organ-on-chip are discussed. Chapter 2 explores the use of a commercial 3D printer, highlighting its accessibility, in the fabrication of a packed microfluidic chromatographic column. The focus is on the characterization of the fabricated column in terms of its efficiency and an initial study of the feasibility of studying the adsorption isotherm of a model protein, lysozyme. Chapter 3 exploits the fabricated cation-exchange resin packed 3D printed column in the investigation of the adsorption isotherm of PEGylated lysozyme and its impurities resulting from its synthesis. As proof-of-concept, the parameters determined are then used to establish a mechanistic model of a scaled-up batch separation; hence proving the potential of the device as a reliable scale-down tool for fast-process development in chromatography. Chapter 4 demonstrates a more advanced 3D printing technique through two-photon polymerization in the fabrication of a microfluidic device used in the droplet-based synthesis of nanogels applied in controlled drug delivery. The relation between the properties of the resulting products and the control of the synthesis parameters are put into perspective and compared to the conventional batch synthesis approach. The thesis therefore presents the potential of 3D printing techniques in the fabrication and application in microfluidic systems.
I dispositivi microfluidici si sono affermati come potenti strumenti in un'ampia gamma di applicazioni, che spaziano dall'ingegneria alla biomedicina, offrendo nuovi approcci per risolvere diverse problematiche. In chimica, in particolare, i sistemi microfluidici offrono vantaggi legati alla loro scala micrometrica, che porta alla minimizzazione dei materiali e a un migliore controllo dei parametri. Il Capitolo 1 fornisce una panoramica del campo della microfluidica, discutendo i materiali utilizzati nella loro fabbricazione e le relative tecniche di produzione, evidenziando la stampa 3D come metodo innovativo per la fabbricazione dei dispositivi microfluidici. Inoltre, vengono discusse le applicazioni in tre campi principali: separazioni e purificazioni, sintesi di nanoparticelle e organ-on-chip. Il Capitolo 2 esplora l'utilizzo di una stampante 3D commerciale, evidenziandone l'accessibilità, nella fabbricazione di una colonna cromatografica microfluidica. L'attenzione si concentra sulla caratterizzazione della colonna realizzata in termini di efficienza e su uno studio iniziale della fattibilità di studio dell'isoterma di adsorbimento di una proteina modello, il lisozima. Il Capitolo 3 sfrutta la colonna realizzata e stampata in 3D, impaccata con resina a scambio cationico, nello studio dell'isoterma di adsorbimento del lisozima PEGilato e delle sue impurità derivanti dalla sua sintesi. Come prova di fattibilità, i parametri determinati vengono poi utilizzati per stabilire un modello meccanicistico di una separazione batch su larga scala, dimostrando così il potenziale del dispositivo come strumento affidabile per la riduzione di scala per lo sviluppo di processi rapidi in cromatografia. Il Capitolo 4 illustra una tecnica di stampa 3D più avanzata, basata sulla polimerizzazione a due fotoni, nella fabbricazione di un dispositivo microfluidico utilizzato nella sintesi a gocce di nanogel, applicata al rilascio controllato di farmaci. La relazione tra le proprietà dei prodotti risultanti e il controllo dei parametri di sintesi viene messa in prospettiva e confrontata con l'approccio convenzionale di sintesi in batch. La tesi presenta dunque i potenziali della tecnica di stampa 3D applicandoli nella fabbricazione ed applicazione di sistemi microfluidici.
Fabrication and validation of 3D printed microfluidic devices in separation and synthesis processes
Vladimir, Matining
2025
Abstract
Microfluidic devices have emerged as powerful tools in a wide range of applications branching from engineering to biomedicine offering novel approaches to solve diverse sets of issues. In chemistry, in particular, microfluidic systems offer advantages linked to their micrometric scale leading to the minimization of materials, and enhanced control of parameters. Chapter 1 provides an overview of the field of microfluidics; discussing materials used in their fabrication and their production techniques highlighting 3D printing as an innovative method to obtain microfluidic devices. Furthermore, the applications in three principal fields namely separation sciences, nanoparticle synthesis, and organ-on-chip are discussed. Chapter 2 explores the use of a commercial 3D printer, highlighting its accessibility, in the fabrication of a packed microfluidic chromatographic column. The focus is on the characterization of the fabricated column in terms of its efficiency and an initial study of the feasibility of studying the adsorption isotherm of a model protein, lysozyme. Chapter 3 exploits the fabricated cation-exchange resin packed 3D printed column in the investigation of the adsorption isotherm of PEGylated lysozyme and its impurities resulting from its synthesis. As proof-of-concept, the parameters determined are then used to establish a mechanistic model of a scaled-up batch separation; hence proving the potential of the device as a reliable scale-down tool for fast-process development in chromatography. Chapter 4 demonstrates a more advanced 3D printing technique through two-photon polymerization in the fabrication of a microfluidic device used in the droplet-based synthesis of nanogels applied in controlled drug delivery. The relation between the properties of the resulting products and the control of the synthesis parameters are put into perspective and compared to the conventional batch synthesis approach. The thesis therefore presents the potential of 3D printing techniques in the fabrication and application in microfluidic systems.| File | Dimensione | Formato | |
|---|---|---|---|
|
MATINING_THESIS.pdf
accesso solo da BNCF e BNCR
Licenza:
Tutti i diritti riservati
Dimensione
36.16 MB
Formato
Adobe PDF
|
36.16 MB | Adobe PDF |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/356149
URN:NBN:IT:POLIMI-356149