The growing demand for high-performance, miniaturized, and flexible electronic devices requires the development of new materials and advanced manufacturing strategies capable of overcoming current technological limitations. This PhD research focuses on the design and processing, via additive manufacturing, of polymer composites with controlled thermal and electrical conductivity properties, in order to meet the requirements of advanced electronic applications. Polymers offer numerous advantages, including low weight, tunable mechanical properties, and ease of processing. However, their inherently low thermal and electrical conductivity has so far limited their use in functional applications. This work addresses these limitations and seeks to overcome them through the development of polymer composites with microstructurally controlled properties, compatible with additive manufacturing technologies. This research studies the relationships between formulation, microstructure, and processability, highlighting that additive manufacturing enables the fabrication of complex geometries but can also affect the material’s microstructure and, therefore, its final properties. Two main research directions encompass this project. The first is oriented toward the production of printable composites displaying thermal conductivity and electrical insulation for thermal management applications. This project is structured along two main research directions. The first focuses on the development of printable thermally conductive yet electrically insulating composites for thermal management applications. The potential utilization of these composites is for heat sinks, thermal interface materials, and electronic packaging, which are all becoming more important with the ongoing miniaturization of electronic devices. In particular, these polymer composites are prepared using boron nitride as a filler, with investigations concerning the effect of particle size and morphology and surface functionalization on the final properties of the materials. A variety of polymer matrices were explored, including polyamides, epoxy resins, polysiloxanes, and benzocyclobutene, depending on the application and processing needs. From the point of view of additive manufacturing technologies, a wide variety of techniques have been employed, including fused deposition modeling, direct ink writing, vat photopolymerization, and aerosol jet printing, covering a broad range of resolutions. The second research direction involves the development of printable electrically conductive composites for long-term sensing applications, especially for electrophysiological monitoring. A flexible composite material based on a conjugated polymer and polysiloxane was developed. It proved to be compatible with direct ink writing and characterized by high electrical conductivity, mechanical resistance, and environmental stability, relevant to integration into electronic devices. Hence, this study shows that proper filler selection, hybrid systems, and micro-structural control over polymer composites are key means to tune conductive properties while ensuring good printability. These results allowed for the establishment of structure-property relationships, supporting the simultaneous optimization of material design and digital fabrication. This work contributes to bridging advanced conductive materials to additive manufacturing technologies to lay the foundational stages for developing advanced electronics.
La crescente domanda di dispositivi elettronici ad alte prestazioni, miniaturizzati e flessibili richiede lo sviluppo di nuovi materiali e strategie di fabbricazione avanzate, capaci di superare gli attuali limiti tecnologici. Questo lavoro si concentra sullo studio della formulazione e della processabilità, mediante manifattura additiva, di compositi polimerici con proprietà controllate di conducibilità termica ed elettrica, con l’obiettivo di soddisfare i molteplici requisiti funzionali di applicazioni elettroniche avanzate. I polimeri offrono numerosi vantaggi, tra cui: leggerezza, proprietà meccaniche modulabili, e facilità di lavorazione. Tuttavia, la loro scarsa conducibilità termica ed elettrica ne ha finora limitato l’impiego in ambito funzionale. Questo lavoro approfondisce tali limiti e cerca di superarli attraverso lo sviluppo di compositi polimerici con proprietà controllate a livello microstrutturale, compatibili con le tecnologie di manifattura additiva. La ricerca studia le relazioni tra formulazione, microstruttura e processabilità, evidenziando come la manifattura additiva non solo consenta la realizzazione di geometrie complesse, ma possa anche influenzare la microstruttura del materiale e, di conseguenza, le sue proprietà finali. Il lavoro si articola su due principali direttrici. La prima riguarda lo sviluppo di compositi stampabili e termicamente conduttivi, mantenendo le proprietà di isolamento elettrico, rilevanti nell’ambito della gestione termica. Tra i potenziali utilizzi si annoverano i dissipatori di calore, le interfacce termiche e il packaging elettronico, componenti sempre più essenziali a causa della progressiva miniaturizzazione dei dispositivi elettronici. Nello specifico, tali compositi polimerici sono stati realizzati utilizzando nitruro di boro come filler e ponendo particolare attenzione all’influenza della dimensione, della morfologia e della funzionalizzazione superficiale delle particelle sulle proprietà finali del materiale. Per tale scopo sono state studiate diverse matrici polimeriche, tra cui poliammidi, resine epossidiche, polisilossani e benzociclobutene, selezionate sulla base dei requisiti di processabilità e applicativi. Sotto il profilo delle tecnologie di manifattura additiva, è stata impiegata una vasta gamma di processi, tra cui fused deposition modeling, direct ink writing, vat photopolymerization e aerosol jet printing, in grado di coprire un ampio intervallo di risoluzioni. La seconda direttrice riguarda, invece, lo sviluppo di compositi stampabili elettricamente conduttivi, con possibili applicazioni nel sensing a lungo termine, e, in particolare, per il monitoraggio elettrofisiologico. È stato sviluppato un materiale composito flessibile utilizzato un polimero coniugato e polisilossano, compatibile con direct ink writing, avente elevata conducibilità elettrica, buone proprietà meccaniche e stabilità ambientale, le quali sono caratteristiche fondamentali per l’impiego nei dispositivi elettronici. Questo lavoro di ricerca mostra come la selezione mirata dei filler, l’impiego di sistemi ibridi e il controllo microstrutturale dei compositi polimerici siano strumenti fondamentali per il controllo delle proprietà di conducibilità, garantendo al contempo una buona stampabilità. I risultati ottenuti hanno permesso di definire relazioni struttura-proprietà, supportando l’ottimizzazione sia della formulazione dei materiali sia del processo di fabbricazione. Complessivamente, questo progetto di ricerca dottorale contribuisce all’integrazione di materiali avanzati per la manifattura additiva, ponendo le basi per lo sviluppo di moderni dispositivi elettronici.
Polymer composites for enhanced electronics via additive manufacturing
Simone, Bagatella
2025
Abstract
The growing demand for high-performance, miniaturized, and flexible electronic devices requires the development of new materials and advanced manufacturing strategies capable of overcoming current technological limitations. This PhD research focuses on the design and processing, via additive manufacturing, of polymer composites with controlled thermal and electrical conductivity properties, in order to meet the requirements of advanced electronic applications. Polymers offer numerous advantages, including low weight, tunable mechanical properties, and ease of processing. However, their inherently low thermal and electrical conductivity has so far limited their use in functional applications. This work addresses these limitations and seeks to overcome them through the development of polymer composites with microstructurally controlled properties, compatible with additive manufacturing technologies. This research studies the relationships between formulation, microstructure, and processability, highlighting that additive manufacturing enables the fabrication of complex geometries but can also affect the material’s microstructure and, therefore, its final properties. Two main research directions encompass this project. The first is oriented toward the production of printable composites displaying thermal conductivity and electrical insulation for thermal management applications. This project is structured along two main research directions. The first focuses on the development of printable thermally conductive yet electrically insulating composites for thermal management applications. The potential utilization of these composites is for heat sinks, thermal interface materials, and electronic packaging, which are all becoming more important with the ongoing miniaturization of electronic devices. In particular, these polymer composites are prepared using boron nitride as a filler, with investigations concerning the effect of particle size and morphology and surface functionalization on the final properties of the materials. A variety of polymer matrices were explored, including polyamides, epoxy resins, polysiloxanes, and benzocyclobutene, depending on the application and processing needs. From the point of view of additive manufacturing technologies, a wide variety of techniques have been employed, including fused deposition modeling, direct ink writing, vat photopolymerization, and aerosol jet printing, covering a broad range of resolutions. The second research direction involves the development of printable electrically conductive composites for long-term sensing applications, especially for electrophysiological monitoring. A flexible composite material based on a conjugated polymer and polysiloxane was developed. It proved to be compatible with direct ink writing and characterized by high electrical conductivity, mechanical resistance, and environmental stability, relevant to integration into electronic devices. Hence, this study shows that proper filler selection, hybrid systems, and micro-structural control over polymer composites are key means to tune conductive properties while ensuring good printability. These results allowed for the establishment of structure-property relationships, supporting the simultaneous optimization of material design and digital fabrication. This work contributes to bridging advanced conductive materials to additive manufacturing technologies to lay the foundational stages for developing advanced electronics.| File | Dimensione | Formato | |
|---|---|---|---|
|
Bagatella_PhD-thesis.pdf
accesso solo da BNCF e BNCR
Licenza:
Tutti i diritti riservati
Dimensione
67.33 MB
Formato
Adobe PDF
|
67.33 MB | Adobe PDF |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/356153
URN:NBN:IT:POLIMI-356153