The long-term electrical reliability of insulation materials remains a central concern in modern electronic systems, especially in light of the increasing prevalence of highly integrated and miniaturized devices. In this context, galvanic isolation has emerged as a critical area of investigation, characterized by the use of relatively thick dielectric layers, standing in contrast to the extensively studied reliability of thin oxides. Galvanic isolation ensures the safe electrical separation of functional blocks within a system, while still allowing energy or data transmission across the isolation barrier. Among the different materials used to implement isolation barriers, polymeric dielectrics have gained significant attention due to their compatibility with low-cost and high-volume manufacturing processes. However, the use of polymer-based materials presents specific challenges. Their intrinsic characteristics expose them to specific degradation mechanisms when subjected to electrical, thermal or more in general environmental stress over long periods of time. In particular, variations in humidity and temperature, when coupled with prolonged electrical stress, can result in early-stage failure through complex mechanisms that remain an active area of research. Understanding these interactions under realistic operating conditions is thus essential to ensure the development of safe and robust isolation systems. This doctoral research addresses the reliability concerns associated with polymeric dielectrics used for state of the art galvanic isolation devices: the study aims to investigate the failure mechanisms triggered by environmental and electrical stress and to develop models that link material properties, device architecture and stress conditions to long-term insulation performance. The methodology adopted in this work combines characterization techniques, experimental testing under controlled environments and the formulation of physical and compact models to describe the observed degradation phenomena. The initial part of the thesis introduces the functional role of galvanic isolation in electronics, emphasizing its relevance across a wide range of applications, including power conversion, industrial control, renewable energy systems, and medical instrumentation. A comparative analysis of the main isolation technologies including optical, magnetic, and capacitive is provided, outlining their operating principles, performance characteristics and application-specific trade-offs. The thesis then provides a comprehensive analysis of polymeric materials from the perspective of their use as dielectrics. Their chemical configuration, electronic structure and charge transport mechanisms are examined, including a discussion on the influence of structural disorder, molecular mobility and water uptake on dielectric behavior. A focus is placed on how moisture interacts with the polymer matrix, affects charge dynamics and acts as a precursor to premature dielectric breakdown. The core of the research is organized into three major investigative threads. First, partial discharges are studied as early indicators of insulation degradation. Dedicated test structures and commercial components are used to analyze inception thresholds, repetition rates and causes. Second, the dynamics of moisture absorption and diffusion are examined in relation to the lifetime of galvanic isolation devices. The impact of temperature-dependent moisture behavior on Time-Dependent Dielectric Breakdown (TDDB) is quantified and a physical picture is developed to explain the non-monotonic lifetime trends observed in TDDB tests. Third, the influence of termination geometry on electric field distribution is investigated. The conducted study demonstrates that adopting not specifically studied terminations leads to field enhancement and localized stress, significantly increasing the likelihood of early breakdown. Numerical simulations and experimental validation show that optimized edge profiles can mitigate these effects, offering substantial gains in device reliability without the need to alter the base dielectric material. In conclusion, this work provides a comprehensive reliability framework for polymer-based galvanic isolation, bridging material science, device engineering and degradation modeling. The insights gained can be employed for the design of next-generation isolation systems, combining safety, durability, and manufacturability to meet the demands of future high-performance electronic applications.
La affidabilità elettrica a lungo termine dei materiali isolanti rimane una preoccupazione centrale nei moderni sistemi elettronici, soprattutto alla luce della crescente diffusione di dispositivi altamente integrati e miniaturizzati. In questo contesto, l’isolamento galvanico è emerso come un ambito di ricerca cruciale, caratterizzato dall’impiego di strati dielettrici relativamente spessi, in netto contrasto con l’affidabilità dei sottili ossidi, già ampiamente studiata. L’isolamento galvanico garantisce la sicura separazione elettrica tra i diversi blocchi funzionali di un sistema, pur consentendo la trasmissione di energia o dati attraverso la barriera isolante. Tra i vari materiali utilizzati per realizzare tali barriere, i dielettrici polimerici hanno attirato notevole attenzione grazie alla loro compatibilità con processi produttivi a basso costo e ad alto volume. Tuttavia, l’impiego di materiali polimerici presenta sfide specifiche: le loro caratteristiche intrinseche li rendono suscettibili a particolari meccanismi di degrado quando sottoposti a stress elettrico, termico o ambientale di lunga durata. In particolare, variazioni di umidità e temperatura, combinate con stress elettrici prolungati, possono condurre a guasti prematuri attraverso meccanismi complessi che rappresentano tuttora un tema di ricerca aperto. Comprendere tali interazioni in condizioni operative realistiche è dunque essenziale per sviluppare sistemi di isolamento sicuri e affidabili. Questa ricerca di dottorato affronta le problematiche di affidabilità dei dielettrici polimerici impiegati nei dispositivi di isolamento galvanico allo stato dell’arte: l’obiettivo è investigare i meccanismi di guasto innescati da stress ambientali ed elettrici e sviluppare modelli in grado di collegare proprietà dei materiali, architettura del dispositivo e condizioni di stress alle prestazioni isolanti di lungo periodo. La metodologia adottata combina tecniche di caratterizzazione, test sperimentali in ambienti controllati e la formulazione di modelli fisici e compatti per descrivere i fenomeni di degrado osservati. La prima parte della tesi introduce il ruolo funzionale dell’isolamento galvanico nell’elettronica, sottolineandone la rilevanza in un ampio spettro di applicazioni, tra cui conversione di potenza, controllo industriale, sistemi di energia rinnovabile e strumentazione medicale. Viene inoltre proposta un’analisi comparativa delle principali tecnologie di isolamento — ottiche, magnetiche e capacitive — evidenziandone principi di funzionamento, caratteristiche prestazionali e compromessi applicativi. Successivamente, viene fornita un’analisi approfondita dei materiali polimerici dal punto di vista del loro impiego come dielettrici. Ne vengono esaminate configurazione chimica, struttura elettronica e meccanismi di trasporto di carica, con particolare attenzione all’influenza del disordine strutturale, della mobilità molecolare e dell’assorbimento di umidità sul comportamento dielettrico. Viene posto l’accento sulle modalità con cui l’umidità interagisce con la matrice polimerica, influenza le dinamiche di carica e funge da precursore del breakdown dielettrico prematuro. Il cuore della ricerca si articola in tre principali filoni investigativi. In primo luogo, le scariche parziali sono studiate come indicatori precoci di degrado dell’isolamento, attraverso l’analisi di strutture di test dedicate e componenti commerciali per valutare soglie di innesco, tassi di ripetizione e cause. In secondo luogo, le dinamiche di assorbimento e diffusione dell’umidità sono indagate in relazione alla vita utile dei dispositivi di isolamento galvanico. In questo ambito viene quantificato l’impatto della dipendenza termica del comportamento dell’umidità sul fenomeno di Time-Dependent Dielectric Breakdown (TDDB) e sviluppato un quadro fisico per spiegare le tendenze non monotone della vita osservate nei test TDDB. In terzo luogo, viene valutata l’influenza della geometria delle terminazioni sulla distribuzione del campo elettrico. Lo studio condotto dimostra che l’adozione di terminazioni non ottimizzate porta a intensificazione del campo e stress localizzati, aumentando significativamente la probabilità di guasti prematuri. Simulazioni numeriche e validazione sperimentale mostrano che profili di bordo ottimizzati possono mitigare tali effetti, migliorando sensibilmente l’affidabilità del dispositivo senza la necessità di modificare il materiale dielettrico di base. In conclusione, questo lavoro fornisce un quadro complessivo di affidabilità per l’isolamento galvanico a base polimerica, integrando scienza dei materiali, ingegneria dei dispositivi e modellazione dei meccanismi di degrado. Le conoscenze acquisite potranno essere applicate alla progettazione dei sistemi di isolamento di nuova generazione, combinando sicurezza, durabilità e produttività per soddisfare le esigenze delle future applicazioni elettroniche ad alte prestazioni.
Challenges in the development of modern galvanic isolators based on polymeric dielectrics: a device reliability perspective analysis
Matteo, Greatti
2025
Abstract
The long-term electrical reliability of insulation materials remains a central concern in modern electronic systems, especially in light of the increasing prevalence of highly integrated and miniaturized devices. In this context, galvanic isolation has emerged as a critical area of investigation, characterized by the use of relatively thick dielectric layers, standing in contrast to the extensively studied reliability of thin oxides. Galvanic isolation ensures the safe electrical separation of functional blocks within a system, while still allowing energy or data transmission across the isolation barrier. Among the different materials used to implement isolation barriers, polymeric dielectrics have gained significant attention due to their compatibility with low-cost and high-volume manufacturing processes. However, the use of polymer-based materials presents specific challenges. Their intrinsic characteristics expose them to specific degradation mechanisms when subjected to electrical, thermal or more in general environmental stress over long periods of time. In particular, variations in humidity and temperature, when coupled with prolonged electrical stress, can result in early-stage failure through complex mechanisms that remain an active area of research. Understanding these interactions under realistic operating conditions is thus essential to ensure the development of safe and robust isolation systems. This doctoral research addresses the reliability concerns associated with polymeric dielectrics used for state of the art galvanic isolation devices: the study aims to investigate the failure mechanisms triggered by environmental and electrical stress and to develop models that link material properties, device architecture and stress conditions to long-term insulation performance. The methodology adopted in this work combines characterization techniques, experimental testing under controlled environments and the formulation of physical and compact models to describe the observed degradation phenomena. The initial part of the thesis introduces the functional role of galvanic isolation in electronics, emphasizing its relevance across a wide range of applications, including power conversion, industrial control, renewable energy systems, and medical instrumentation. A comparative analysis of the main isolation technologies including optical, magnetic, and capacitive is provided, outlining their operating principles, performance characteristics and application-specific trade-offs. The thesis then provides a comprehensive analysis of polymeric materials from the perspective of their use as dielectrics. Their chemical configuration, electronic structure and charge transport mechanisms are examined, including a discussion on the influence of structural disorder, molecular mobility and water uptake on dielectric behavior. A focus is placed on how moisture interacts with the polymer matrix, affects charge dynamics and acts as a precursor to premature dielectric breakdown. The core of the research is organized into three major investigative threads. First, partial discharges are studied as early indicators of insulation degradation. Dedicated test structures and commercial components are used to analyze inception thresholds, repetition rates and causes. Second, the dynamics of moisture absorption and diffusion are examined in relation to the lifetime of galvanic isolation devices. The impact of temperature-dependent moisture behavior on Time-Dependent Dielectric Breakdown (TDDB) is quantified and a physical picture is developed to explain the non-monotonic lifetime trends observed in TDDB tests. Third, the influence of termination geometry on electric field distribution is investigated. The conducted study demonstrates that adopting not specifically studied terminations leads to field enhancement and localized stress, significantly increasing the likelihood of early breakdown. Numerical simulations and experimental validation show that optimized edge profiles can mitigate these effects, offering substantial gains in device reliability without the need to alter the base dielectric material. In conclusion, this work provides a comprehensive reliability framework for polymer-based galvanic isolation, bridging material science, device engineering and degradation modeling. The insights gained can be employed for the design of next-generation isolation systems, combining safety, durability, and manufacturability to meet the demands of future high-performance electronic applications.| File | Dimensione | Formato | |
|---|---|---|---|
|
thesis.pdf
accesso solo da BNCF e BNCR
Licenza:
Tutti i diritti riservati
Dimensione
48.38 MB
Formato
Adobe PDF
|
48.38 MB | Adobe PDF |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/356409
URN:NBN:IT:POLIMI-356409