Using quantum Monte Carlo Methods, we compute the differential cross sections for elastic scattering of dark matter (DM) particles off light nuclei, up to $A=6$ (d, $^3$H, $^3$He, $^4$He, and $^6$Li). DM-nucleon one- and two-body currents are obtained to next-to-leading order in chiral effective theory, and they are derived from a DM-quark and DM-gluon effective interaction. The nuclear ground states wave functions are obtained from a phenomenological nuclear Hamiltonian, composed of the Argonne $v_{18}$ two-body interaction and the three-body Urbana IX. In this framework, we study the impact of one- and two-body currents and discuss the size of nuclear uncertainties. This work evaluates for the first time two-body effects in $A=4,6$ systems and provides the nuclear structure input that can be used to assess the sensitivity of future experimental searches of (light) dark matter, especially relevant for possible experimental targets such as $^3$He and $^4$He.

A Quantum Monte Carlo approach to dark matter-nuclei interaction

Andreoli, Lorenzo
2019

Abstract

Using quantum Monte Carlo Methods, we compute the differential cross sections for elastic scattering of dark matter (DM) particles off light nuclei, up to $A=6$ (d, $^3$H, $^3$He, $^4$He, and $^6$Li). DM-nucleon one- and two-body currents are obtained to next-to-leading order in chiral effective theory, and they are derived from a DM-quark and DM-gluon effective interaction. The nuclear ground states wave functions are obtained from a phenomenological nuclear Hamiltonian, composed of the Argonne $v_{18}$ two-body interaction and the three-body Urbana IX. In this framework, we study the impact of one- and two-body currents and discuss the size of nuclear uncertainties. This work evaluates for the first time two-body effects in $A=4,6$ systems and provides the nuclear structure input that can be used to assess the sensitivity of future experimental searches of (light) dark matter, especially relevant for possible experimental targets such as $^3$He and $^4$He.
2019
Inglese
Pederiva, Francesco
Università degli studi di Trento
TRENTO
73
File in questo prodotto:
File Dimensione Formato  
Disclaiemr_Andreoli.pdf

non disponibili

Dimensione 305.78 kB
Formato Adobe PDF
305.78 kB Adobe PDF
PhDthesis_Andreoli.pdf

non disponibili

Dimensione 3.27 MB
Formato Adobe PDF
3.27 MB Adobe PDF

I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14242/59864
Il codice NBN di questa tesi è URN:NBN:IT:UNITN-59864