In this dissertation, suggestions and innovative solutions are proposed to fully perform an on-line optimization without any risk for the hardware. On the one hand, a new real-time fitness implementation can halt the carrying out of an experiment, if a highly unsatisfactory solution is recognized. On the other hand, a new hybrid architecture integrates EA and simplex method in order speed up the convergence.

Online hybrid evolutionary algorithms for auto-tuning of electric drives

Cascella, Giuseppe Leonardo
2005

Abstract

In this dissertation, suggestions and innovative solutions are proposed to fully perform an on-line optimization without any risk for the hardware. On the one hand, a new real-time fitness implementation can halt the carrying out of an experiment, if a highly unsatisfactory solution is recognized. On the other hand, a new hybrid architecture integrates EA and simplex method in order speed up the convergence.
2005
Inglese
Salvatore, Luigi
Torelli, Francesco
Politecnico di Bari
File in questo prodotto:
File Dimensione Formato  
D_2005_01.pdf

accesso aperto

Dimensione 2.26 MB
Formato Adobe PDF
2.26 MB Adobe PDF Visualizza/Apri

I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14242/64012
Il codice NBN di questa tesi è URN:NBN:IT:POLIBA-64012