From a historical point of view, the diffusion and the great success of diesel engines were induced by the introduction of the Common-Rail System (CRS). This injection system enabled precise metering of the fuel through the injector nozzles by acting on injection timings and by regulating the common-rail pressure. Moreover, the ability to control the injection pressure made it possible to perform multiple injections, which is the crucial point for the modern diesel engine to reduce pollutant emissions. The evolution of the CRS over time is mostly related to the method used to control the rail pressure. Initially, the common-rail pressure regulation was performed by the so-called Pressure control valve (PCV). This valve was mounted directly on the common-rail or, equivalently, on the outlet port of the pump. This topology ensures a fast and precise regulation of the pressure by discharging the fuel in excess to the tank. The main drawback of this approach is represented by the pressure fluctuations due to the valve functioning, which acts as disturbances on the operation of the injectors. Furthermore, the recirculation of the compressed flow to the tank causes energy dissipation and undesired heating in the fuel tank. To overcome the disadvantages of the PCV, in the modern CRS was introduced a Fuel Metering Unit (FMU), which consists of a valve mounted on the high-pressure pump to adjusts its inlet flow and thus control the common-rail pressure. This kind of regulation reduces energy dissipation because the quantity of fuel compressed by the pump and delivered to the rail is exactly the quantity set by the ECU to obtain the proper air/fuel ratio. The new topology of CRS proposed in this work, which is still under development, introduces a Continuously Variable Transmission (CVT) between the engine and the high-pressure pump in place of a conventional gear coupling. It enables the adjustment of the pump speed according to the required common-rail pressure and demanded injection flow, thus reducing mechanical losses in the high-pressure pump. In this work, we summarize the main results obtained investigating the effectiveness of this novel approach. In particular, we present the control strategy for a complete CRS equipped with a continuously variable transmission, which has been validated in simulation, and a preliminary experimental proof of concept performed on a simplified prototype version of the system.
Da un punto di vista storico, la diffusione e il grande successo dei motori diesel sono dovuti all'introduzione del Common Rail System (CRS). Questo sistema di iniezione ha consentito un preciso dosaggio del carburante attraverso gli niettori agendo sui tempi di iniezione e regolando la pressione common rail. Inoltre, la capacità di controllare la pressione di iniezione ha permesso di eseguire più iniezioni, che è il punto cruciale per il moderno motore diesel per ridurre le emissioni inquinanti. L'evoluzione del CRS nel tempo è principalmente legata al metodo utilizzato per controllare la pressione del common rail. Inizialmente, la regolazione della pressione common rail veniva eseguita dalla cosiddetta Pressure Control Valve (PCV). Questa valvola veniva montata direttamente sul common rail o, equivalentemente, in uscita alla pompa di alta pressione. Questa topologia garantisce una regolazione rapida e precisa della pressione, scaricando il carburante in eccesso nel serbatoio. L'inconveniente principale di questo approccio è rappresentato dalle fluttuazioni di pressione dovute al funzionamento della valvola, che agiscono da disturbo sul funzionamento degli iniettori. Inoltre, il ricircolo del flusso compresso al serbatoio provoca dissipazione di energia e riscaldamento indesiderato nel serbatoio del carburante. Per ovviare agli svantaggi della PCV, nel moderno CRS è stata introdotta una Fuel Metering Unit (FMU), che consiste in una valvola montata sulla pompa ad alta pressione per regolarne il flusso in ingresso e quindi controllare la pressione common rail. Questo tipo di regolazione riduce la dissipazione di energia perché la quantità di carburante compresso dalla pompa è esattamente la quantità impostata dalla Engine Control Unit (ECU) per ottenere il corretto rapporto aria / carburante. La nuova topologia di CRS proposta in questo lavoro, che è ancora in fase di sviluppo, introduce una trasmissione a variazione continua (CVT) tra il motore e la pompa ad alta pressione al posto del tradizionale giunto a ingranaggi. Consente la regolazione della velocità della pompa in base alla pressione common rail richiesta e al flusso di iniezione richiesto, riducendo così le perdite meccaniche nella pompa ad alta pressione. In questo lavoro, riassumiamo i principali risultati ottenuti studiando l'efficacia di questo nuovo approccio. In particolare, presentiamo la strategia di controllo per un CRS completo dotato di una trasmissione a variazione continua, che è stata validata in simulazione, e un proof of concept sviluppato su una versione semplificata del sistema.
Theoretical and experimental study on a mechatronic speed variator device for HD Fuel-Injection-Common Rail Pump
Tomaselli, Michele
2021
Abstract
From a historical point of view, the diffusion and the great success of diesel engines were induced by the introduction of the Common-Rail System (CRS). This injection system enabled precise metering of the fuel through the injector nozzles by acting on injection timings and by regulating the common-rail pressure. Moreover, the ability to control the injection pressure made it possible to perform multiple injections, which is the crucial point for the modern diesel engine to reduce pollutant emissions. The evolution of the CRS over time is mostly related to the method used to control the rail pressure. Initially, the common-rail pressure regulation was performed by the so-called Pressure control valve (PCV). This valve was mounted directly on the common-rail or, equivalently, on the outlet port of the pump. This topology ensures a fast and precise regulation of the pressure by discharging the fuel in excess to the tank. The main drawback of this approach is represented by the pressure fluctuations due to the valve functioning, which acts as disturbances on the operation of the injectors. Furthermore, the recirculation of the compressed flow to the tank causes energy dissipation and undesired heating in the fuel tank. To overcome the disadvantages of the PCV, in the modern CRS was introduced a Fuel Metering Unit (FMU), which consists of a valve mounted on the high-pressure pump to adjusts its inlet flow and thus control the common-rail pressure. This kind of regulation reduces energy dissipation because the quantity of fuel compressed by the pump and delivered to the rail is exactly the quantity set by the ECU to obtain the proper air/fuel ratio. The new topology of CRS proposed in this work, which is still under development, introduces a Continuously Variable Transmission (CVT) between the engine and the high-pressure pump in place of a conventional gear coupling. It enables the adjustment of the pump speed according to the required common-rail pressure and demanded injection flow, thus reducing mechanical losses in the high-pressure pump. In this work, we summarize the main results obtained investigating the effectiveness of this novel approach. In particular, we present the control strategy for a complete CRS equipped with a continuously variable transmission, which has been validated in simulation, and a preliminary experimental proof of concept performed on a simplified prototype version of the system.File | Dimensione | Formato | |
---|---|---|---|
33 ciclo-TOMASELLI Michele.pdf
accesso aperto
Dimensione
2.37 MB
Formato
Adobe PDF
|
2.37 MB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/64225
URN:NBN:IT:POLIBA-64225